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•  Detec6on	  basics	  
•  Distributed	  detec6on	  and	  decision	  fusion	  
•  Some	  fun	  pathologies	  

–  Iden6cal	  sensors	  can	  be	  different	  
–  Dependence	  

•  New	  structures	  
–  Censoring	  sensors	  
–  Feedback	  of	  decisions	  
–  Sequen6al	  networks	  
–  Learning	  decision-‐makers’	  biases	  

•  Other	  topics	  
–  Byzan6ne	  sensors	  
–  Secrecy	  and	  malicious	  sensors	  
–  Sequen6al	  and	  quickest	  tests	  

Outline	  
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•  Problem	  is	  to	  choose	  between	  
	  

•  Op6mal	  decision	  uses	  likelihood	  ra6o	  (LRT)	  to	  
compute	  probability	  of	  deciding	  H1:	  
	  
	  
	   	   	   	   	   	   	   	  	  

•  For	  example	  in	  Gaussian	  shiX-‐in-‐mean	  case:	  
	  

Detec6on	  and	  Decision-‐Making	  behavior of this random vector is defined by

H0 : Xi � P0i

H1 : Xi � P1i

where H0 and H1 are the null and alternative hypotheses, respectively, and the Pki, i =

1, 2, . . . ,N , k = 0, 1 are probability distributions. We assume throughout that P0i and P1i

are absolutely continuous with respect to each other; hence, the same �-algebra is used under

both hypotheses.

If the channels between the sensors and the fusion center are not bandlimited, the decen-

tralized detection problem becomes, in e&ect, centralized. The sensors will then transmit the

received data directly. Let x = {x1, x2, . . . , xN} be a realization of the complete (at all sensors)
random data X = {X1, X2, . . . , XN} with distribution Pk under hypothesis Hk. The optimal
centralized test for the Neyman-Pearson and Bayes criteria is well known [14]. As we show in

section IV (see also [15]), the same test is also optimal for the mutual information criterion [16].

This test is given by

*(x) =

T
��z

��Z

1 if L(x) > +

� if L(x) = +

0 if L(x) < +

(1)

where *(x) is the probability of deciding for H1 when x is observed, L is the likelihood ratio

dP1/dP0, and � and + are chosen to conform to the specific performance goals of the system

designer. For Bayes detection, � is irrelevant and for mutual information it is optimally 0 or 1

(see section IV). If we assume no bandwidth constraint and that the data at di&erent sensors

is conditionally independent, then the sensors can transmit the local likelihood ratio (since it is

then a su^cient statistic for the detection problem [17, pages 145-147]), rather than the data

itself. We assume henceforth that the sensor data is, in fact, conditionally independent.

In general, for decentralized detection, the channels between the sensors and the fusion center

will be bandlimited. Suppose that, for a given decision, the maximum number of bits that can

be transmitted by sensor i is bi = log2Mi. Suppose also that the number of possible values of Li

(the local likelihood ratio at the ith sensor) is greater than Mi. Under these circumstances, we

must transmit a non-su^cient statistic Ui from the ith sensor to the fusion center. The major

subject of this paper is the optimal form of such a statistic. Since the channel bit rate is limited

to bi, it is apparent that Ui must belong to a set containing at most Mi elements. The elements

themselves are irrelevant, for convenience we assume that they form the set {0, 1, . . . ,Mi � 1}
and we define the probabilities ij = Pr{Ui = j|H0} and #ij = Pr{Ui = j|H1}. Hence, the
situation we are studying is the following: the ith sensor receives the random data Xi; according

to some yet to be determined decision rule, it produces the statistic Ui, which takes on one of

the values in the set {0, 1, . . . ,Mi � 1} in accordance with the probabilities {ij} and {#ij}; the
set of statistics {Ui}, i = 1, 2, . . . , N , is transmitted to the fusion center where the final binary
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•  Neyman-‐Pearson	  
– Maximize	  Pd	  =	  Pr(decide	  H1|H1	  true)	  for	  given	  specified	  
level	  of	  Pfa	  =	  Pr(decide	  H1|H0	  true)	  

–  LRT	  is	  op6mal,	  threshold	  τ	  determined	  by	  Pfa	  

•  Bayes	  
–  Assume	  “costs”	  cij	  =	  Cost	  of	  deciding	  Hi	  when	  Hj	  is	  true	  
–  Assume	  prior	  probabili6es	  Pr(Hi)	  
–  LRT	  is	  op6mal,	  threshold	  	  

Op6mality?	  
1
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and if P(e) minimized: 
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•  In	  some	  cases	  you	  can	  compute	  the	  performance	  
–  T(x)	  is	  Gaussian:	  
	  
	  
	  
	  

–  The	  Q-‐func6on	  is	  the	  unit-‐Gaussian	  tail	  probability.	  
–  The	  importance	  of	  the	  SNR	  (difference	  in	  means	  divided	  by	  
the	  standard	  devia6on)	  is	  obvious.	  

–  In	  many	  cases	  –	  especially	  asympto6c	  ones	  –	  the	  test	  
sta6s6c	  is	  approximated	  as	  Gaussian,	  at	  least	  under	  H1.	  

Performance	  
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Receiver	  Opera6ng	  Characteris6c	  
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ROC: Plot of probability of detection 
versus probability of false alarm. 

Sometimes a plot of 
probability of detection 

versus signal to noise ratio 
for a fixed false alarm rate is 

also called an “ROC.” 
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•  Suppose	  our	  tes6ng	  problem	  is	  	  
	  
	  

•  Then	  our	  test	  sta6s6c	  is	  
	  
	  

•  Now	  we	  can	  only	  reach	  certain	  probabili6es	  of	  
false	  alarm:	  	  

Discrete	  Data	  
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Discrete	  ROC	  

Pd 

Pfa 

1 

1 

Suppose we 
used test A 50% 
of the time and 
test B 50% of 
the time? 

A 

B 
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Randomiza6on	  

Pd 

Pfa 

1 

1 

This is one reason why 
an ROC has to be 
concave – always! 
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Pd 

Pfa 

1 

1 

This is one reason why 
an ROC has to be 
concave – always! 
 
(Well, almost always.) 

Just use the two 
“corner” tests 
sometimes A, 
sometimes B. 

A 

B 
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Decentralized	  Detec6on	  
DM1	  

DM2	  

DM3	  

DMn	  

x1 

x2 

x3 

xn 

FC	  

u1 

u2 

u3 

un 

u0 

Individual decision-makers 
(DMs) ingest local observations 
(xi) and provide a quantized 
version (ui) of that data to the 
fusion center (FC) who makes 
the final decision u0. 
 
For now assume the xi’s are 
independent conditioned on the 
hypothesis. 
 
For now also assume the 
quantization is binary – that is, 
the ui’s are “local decisions”. 

- Tenney & Sandell, “Detection with distributed sensors,” TAES 1981. 
- Chair & Varshney “Optimal data fusion in multiple sensor detection systems,” TAES 1986. 
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•  In	  a	  sense,	  we’ve	  already	  seen	  it:	  it’s	  the	  case	  with	  
binary	  observa6ons,	  which	  is	  a	  “coun6ng	  rule”	  for	  
observa6ons	  that	  are	  iid	  (k-‐out-‐of-‐n):	  
	  
	  

•  The	  cases	  k=1	  and	  k=n	  are	  interes6ng:	  OR	  and	  AND.	  
–  Naturally	  an	  OR	  rule	  needs	  much	  more	  selec6ve	  decision-‐
makers,	  since	  the	  low	  threshold	  at	  the	  fusion	  center	  
requires	  high	  thresholds	  at	  the	  local	  DM	  level.	  

–  It	  is	  not	  clear	  in	  general	  which	  is	  be,er.	  

The	  Chair/Varshney	  Result	  for	  the	  FC	  
1

Help!
Me!

�(x) =

nX

i=1

log

✓
q1i(1� q0i)

(1� q1i)q0i

◆
xi =

nX

i=1

wixi

September 26, 2016 DRAFT

1

Help!
Me!

H0 : Pr(xi = 1) = 1� Pr(xi = 0) ⌘ q0i

H1 : Pr(xi = 1) = 1� Pr(xi = 0) ⌘ q1i

�(x) =

nX

i=1

log

✓
q1i(1� q0i)

(1� q1i)q0i

◆
xi =

nX

i=1

wixi

September 26, 2016 DRAFT



Slide	  13	  NATO STO IST-155, Willett 

•  It’s	  fairly	  easy	  to	  show	  that	  the	  DMs	  are	  likelihood	  ra6o	  
tests	  in	  the	  case	  of	  binary	  observa6ons:	  
–  The	  FC	  benefits	  from	  the	  best	  q0	  and	  q1.	  
–  That	  means	  a	  LRT	  at	  the	  local	  DM	  level.	  

•  In	  the	  more	  general	  case	  of	  mul6-‐level	  observa6ons	  the	  
situa6on	  is	  not	  so	  clear.	  
–  But	  is	  turns	  out	  to	  be	  the	  natural	  extension.	  
–  The	  DMs	  quan6ze	  their	  local	  likelihood	  ra6os.	  

•  Hence	  both	  DM	  and	  FC	  are	  likelihood	  ra6o	  tests.	  
–  The	  FC	  is	  fairly	  simple	  given	  the	  DM,	  but	  op6mizing	  the	  DMs’	  
quan6za6on	  rules	  is	  not	  straighmorward.	  

•  This	  is	  true	  even	  when	  the	  channels	  are	  error	  prone.	  

What	  about	  the	  DMs?	  

-  Tsitsiklis “Decentralized Detection,” (in Advances in Statistical Signal Processing, vol. 2), 1990. 
-  Chen & Willett, “On the Optimality of the Likelihood Ratio Test for Local Sensor Decision Rules in the Presence 

of Non-Ideal Channels” T-IT 2005. 
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•  Using	  Tang,	  Panpa6	  &	  Kleinman’s	  idea,	  an	  
op6miza6on	  can	  proceed	  using	  Gauss-‐Seidel:	  
–  Fix	  the	  FC	  rule.	  
–  Guess	  the	  quan6za6ons	  at	  the	  DMs.	  
–  Op6mize	  DM1’s	  rule	  given	  all	  others	  fixed.	  
–  Proceed	  to	  DM2	  and	  con6nue.	  

•  It	  does	  converge,	  although	  no	  proof	  to	  an	  op6mum.	  
•  Requires	  independent	  DM’s.	  
•  Must	  be	  done	  for	  all	  FC	  rules.	  

–  Fortunately	  there	  are	  only	  a	  finite	  number.	  

Calcula6on	  of	  DM	  rules	  

- Tang, Pattipati & Kleinman, “An algorithm for the detection thresholds in a distributed detection problem,” SMC-A 1991. 
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•  Blum	  provided	  the	  following	  itera6on:	  
–  Define	  “everyone	  else”:	  	  
–  Define:	  
	  
–  Then	  the	  DM	  rule	  must	  be	  a	  “likelihood	  ra6o”	  test	  on:	  
	  

–  The	  recursion	  is	  similar,	  except	  that	  the	  FC	  rule	  changes	  in	  each	  
itera6on	  

•  This	  is	  more	  general	  in	  the	  sense	  that	  the	  FC	  rule	  is	  
implicitly	  op6mized	  and	  independence	  is	  not	  necessary.	  

•  However	  there	  is	  no	  general	  rule	  for	  M-‐ary	  quan6zers.	  

More	  Comprehensive	  DM	  Rule	  

1
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- Blum, “Necessary Conditions for Optimum Distributed Detectors Under the Neyman-Pearson Criterion, T-IT 1996. 
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•  Consider	  we	  have	  2,	  3	  or	  4	  sensors	  with	  an	  inverse-‐
square	  power	  law	  and	  Swerling	  targets.	  We	  op6mize	  
over	  both	  DM	  and	  FC	  rules	  for	  each	  posi6on:	  

An	  Example	  

-2 -1.5 - I  45 0 0.5 I 1.5 2 

distancc 

Fig. 9. Probability of detection contours for four-sensor system 
with operation at “fusion range” (i.e., with sensors forming square 

of side 1.5 approximately times the standard radius) and a 
false-alarm rate of Contours which surround sensors enclose 
points with probability of detection at least WO, and surrounding 

contours are those corresponding to probabilities of detection 
{0.975,0.95,0.9,75,0.5). 
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Fig. 10. 
figure. Asterisks and numbers indicate sensors’ positioning, and 
lettered locations refer to fusion rules as given in Bble I. This 

figure requires some explanation, for which refer to table and to 
text. 

Optimal fusion rules for four-sensor system of previous 

U1 + u2.u3 10 

U1 + u2.u3.u4 9 
UI + U 1  12 

4-vectors comprising the fusion center’s decision region 
for HI will not appear different in the plot even if the 
4-vectors themselves are different. However, there 
is a symmetry which we have tried to draw out by 
observing, for example, the rules at locations d and e; 
similarly, if the location 6 were close to sensor 3 rather 
than sensor 1 the rule would be ug + (at least two of 

We have discussed Fig. 10 partly for the sake 
of its intrinsic interest, but primarily to show the 
complexity of the fusion process. That is, if one wishes 
to obtain the true benefits of fusion one must in 
general live with a highly interrelated fusion procedure. 
This is perhaps best illustrated by Fig. 11, which is 
a duplication of the scenario of Fig. 6 incorporating 
a comparison of optimal fusion with several “easy” 

{ U19 U29 U4). 

TABLE I 
Fusion Rules for Selected Points of Fig. 10 

Note: Third column indicates number of binary 4-vectors for 
which fusion center decides for H I ;  also + denotes logical OR and 
. denotes logical AND. 

dative intens”  d i i m  

Fig. 11. Ground coverage for four-sensor system with probability 
of detection greater than 90% and probability of false alarm lo-’. 
AND and OR rules refer to systems with those fusion rules and 
identical thresholds; in MAX rule, sensor with highest SNR is 

solely responsible for decision; “opt” refers to system with 
optimized thresholds and fusion rule for every point in space; 

“centralized” indicates that unquantized data is passed directly to 
fusion center. Coverage is “relative” to single-sensor system, and 
range is “relative” to maximum range for single-sensor system. 

fusion rules: 

1) the MAX rule (the sensor with the highest S N R  
is solely responsible for the decision); 

2) the AND rule (the fusion center decides for HI 
only if all sensor decisions are for H I )  using identical 
thresholds; 

only if all sensor decisions are for Ho) using identical 
thresholds. 

3) the OR rule (the fusion center decides for Ha 

To be specific, if at a given location ( x , y )  sensor 
i observes the unit cross-section target with S N R  

992 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 30, NO. 4 OCTOBER 1994 

This plot shows contours of 
constant Pd with Pfa = 10-5. 
 
The sensors are moved apart 
to see the various fusion rules 
and whether the coverage area 
is improved. 

- Willett, Alford & Vannicola, “The Case for Like-Sensor Pre-Detection Fusion,” TAES 1994. 
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Some	  Op6mal	  Fusion	  Rules	  

dut ive  intsr-enwardstance 

Fig. 14. Ground coverage for three-sensor system with probability 
of detection greater than 90% and probability of false alarm 

&get fluctuates such that at each sensor, SNR is independently 
either S or pS, each with probability one-half, and average SNR is 
independently either S or p S ,  each with probability one-half, and 
average SNR is constant. Coverage is “relative” to single-sensor 

system, and range is “relative’’ to maximum range for singlesensor 
system. 

g 
h 
i 
j 
k 

in Xi, and hence we may use Xi as a sufficient statistic 
for generation of Vi, as opposed to resorting to a 
nonlinear function of Xi. 

In Fig. 14 we show the results in terms of ground 
coverage plotted against this ratio, for three sensors, 
p = 0.5, and for various values of p Shigh/Slow. (As 
usual, in a multisensor system the power is divided 
evenly among the sensors. Both axes are in “relative” 
units expressible via modified versions of (5) and 
(6); however, for each value of p the definition of a 
standard radius and of a unit area of ground coverage 
is different, corresponding to the model.) The message 
from the plot is that a single-sensor cannot “see” 
the target at all when the aspect is unfavorable; in 
a multisensor system the probability is low that the 
aspect will be unfavorable from all viewpoints, and 
hence the performance is radically improved. 

The above treatment is intended to be 
illustrative of a facet of multisensor systems. The 
“bimodal” fluctuation model of (12), especially 
when particularized to the case p = 0.5, is in all 
likelihood a poor representation. A more reasonable 
model may be one based on a beta distribution 
[ll], but for computational reasons and because 
the parametrizations are target specific and not 
yet established we have not adopted that here. A 
further weakness of the model is the independence 
assumption; it is far more reasonable that gross 
fluctuations be strongly statistically coupled through 
mutual aspect information, and the possibility of 
using such information is exciting. At any rate, our 
purpose here is to stimulate interest in developing 
and measuring mutual-f luctuation models, and further 
to demonstrate that a fused-data system can offer 
diversity-robustness when appropriate. 

U4 + u3,(u1 + 112) 

u3.(uI + uS.u4) 5 
U3.(Ul.UZ + u4) 5 

11 

uz.(ai l e a d  two of {u1,u3,u4}) 4 

UZ.U4.(UI + u3) 3 - 

d i S t v l c c  

Fig. 15. Optimal fusion rules for four-sensor system in heavy 
clutter. Asterisks and numbers indicate sensors’ positioning, and 

lettered locations refer to fusion rules as given in Bble 11. 

TABLE I1 
Fusion Rules for Selected Points of Fig. 15 

hsion Rule I Cardinality Location 1 

u4 . (Ul  + U2 + u3) + Ul.u2.U3 
d U I . ( U Z  + U3 + u4) 7 

e U1 + U2.UR 10 

3 )  Heavy Clutter: Up to this point we have 
concerned ourselves with CA-CFAR with a 
homogeneous background assumed. Often this is not 
appropriate, in that the background is more accurately 
represented by a heavy-tailed distribution such as K or 
log-normal. 

For computational reasons we are not in a position 
to examine such a case directly; we can, however, 
to a large extent mimic its behavior by specifying 
a poor CFAR estimate. ’lb this end we have again 
used the model of (l), but this time with m = 2 (only 
two reference cells used for the CFAR estimate) and 
yielding an extremely heavy-tailed pair of density 
functions. 

Fig. 15 and Thble I1 give the fusion rule for a 
four-sensor system in which the sensors form a square 
of side 0.75 times the standard radius, with the fused 
false alarm rate being What is notable here is the 
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in Xi, and hence we may use Xi as a sufficient statistic 
for generation of Vi, as opposed to resorting to a 
nonlinear function of Xi. 

In Fig. 14 we show the results in terms of ground 
coverage plotted against this ratio, for three sensors, 
p = 0.5, and for various values of p Shigh/Slow. (As 
usual, in a multisensor system the power is divided 
evenly among the sensors. Both axes are in “relative” 
units expressible via modified versions of (5) and 
(6); however, for each value of p the definition of a 
standard radius and of a unit area of ground coverage 
is different, corresponding to the model.) The message 
from the plot is that a single-sensor cannot “see” 
the target at all when the aspect is unfavorable; in 
a multisensor system the probability is low that the 
aspect will be unfavorable from all viewpoints, and 
hence the performance is radically improved. 

The above treatment is intended to be 
illustrative of a facet of multisensor systems. The 
“bimodal” fluctuation model of (12), especially 
when particularized to the case p = 0.5, is in all 
likelihood a poor representation. A more reasonable 
model may be one based on a beta distribution 
[ll], but for computational reasons and because 
the parametrizations are target specific and not 
yet established we have not adopted that here. A 
further weakness of the model is the independence 
assumption; it is far more reasonable that gross 
fluctuations be strongly statistically coupled through 
mutual aspect information, and the possibility of 
using such information is exciting. At any rate, our 
purpose here is to stimulate interest in developing 
and measuring mutual-f luctuation models, and further 
to demonstrate that a fused-data system can offer 
diversity-robustness when appropriate. 
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Fig. 15. Optimal fusion rules for four-sensor system in heavy 
clutter. Asterisks and numbers indicate sensors’ positioning, and 

lettered locations refer to fusion rules as given in Bble 11. 

TABLE I1 
Fusion Rules for Selected Points of Fig. 15 

hsion Rule I Cardinality Location 1 
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3 )  Heavy Clutter: Up to this point we have 
concerned ourselves with CA-CFAR with a 
homogeneous background assumed. Often this is not 
appropriate, in that the background is more accurately 
represented by a heavy-tailed distribution such as K or 
log-normal. 

For computational reasons we are not in a position 
to examine such a case directly; we can, however, 
to a large extent mimic its behavior by specifying 
a poor CFAR estimate. ’lb this end we have again 
used the model of (l), but this time with m = 2 (only 
two reference cells used for the CFAR estimate) and 
yielding an extremely heavy-tailed pair of density 
functions. 

Fig. 15 and Thble I1 give the fusion rule for a 
four-sensor system in which the sensors form a square 
of side 0.75 times the standard radius, with the fused 
false alarm rate being What is notable here is the 
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The	  Advantage	  

equivalent to 

I . Y L 1  0 0.5 I 1.5 2 2.5 3 3.5 4 

relntiw. intcr-ltnsor d i s w  

Fig. 6. Ground coverage for multisensor system with probability 
of detection greater than 90% and probability of false alarm 
Coverage is “relative” to single-sensor system, and range “relative” 

to maximum range for single-sensor system. 

P\ 

t - 1 1 , .  , , ” ” ”  
‘0 0.2 0.4 0.6 0.8 I 1.2 1.4 1.6 1.8 2 

relative inlo-msm disllnce 

Fig. 7. Ground coverage for multisensor system with probability 
of detection greater than 90% and probability of false alarm 
Coverage is “relative” to single-sensor system, and range “relative” 

to maximum range for single-sensor system. 

2.41 A i 

li 0 0.5 I 1.5 2 2.5 3 3.5 4 

relative inm-scnsor dial” 

Fig. 8. Ground coverage for multisensor system with probability 
of detection greater than 90% and probability of false alarm lo-’. 
Coverage is “relative” to single-sensor system, and range “relative” 

to maximum range for single-sensor system. 

114 

standard radius = [ - 
( y - l l m  - 1 
p - v m  - 1 

[distance units] (6) 

where SI is the SNR observed by a single-sensor 
system with the target one distance-unit away. 

0 For this scenario when the sensors are more than 
twice the standard radius apart they are effectively 
“disjoint.” This is manifested by the horizontal 
curves beyond this point and, although this is not 
given in the figure, by the dominance of the MAX 
fusion rule. 

0 As predicted, for disjoint sensors the coverage varies 
as the square root of their number; that is, four 
disjoint sensors cover twice as much ground area 
as a single sensor with the same aggregate power. 

0 For a multiple sensor colocated system there is little 
improvement in the low-quality coverage, but the 
high-quality coverage is considerably expanded; this 
is as predicted in Fig. 4. 

0 The increase in coverage is not monotonic in 
separation, particularly for high-quality coverage. 

0 There does not appear to be a qualitative change in 
behavior as the false-alarm rate varies. 

The nonmonotonicity is perhaps the most interesting. 
The clear peak in coverage is surprising, but 

referring to Fig. 9 the cause is clear. As the sensors 
move apart, the duplication in their initial colocated 
ground coverage disappears. Before the tessellation 
advantages of disjointness become dominant, however, 
there is a range encountered at which the middle of 
their pattern (i.e., surrounding coordinates (0,O)) is 
insufficiently illuminated by any one of the sensors 
alone but for which collaborative fusion is possible. 
For want of a better term we say that this happens at 
the fusion range. 

?b understand this more fully let us turn attention 
to the optimal fusion rule given in Fig. 10. The 
contours indicate the number of binary n-vectors 
(there are of course 16 such possible in this case, as 
n = 4) which cause the fusion center to decide for 
HI.  The reason for the complicated nature of this 
plot is that in an n-sensor network there are 2’ - 1 
(65535 in this case) possible fusion rules, and as such 
presentation is difficult. Certain example points, as 
indicated by the lettered locations in Fig. 10, are 
illustrated in ’Itible I. The notation here is Boolean, 
for example, at location e of Fig. 10 the optimal fusion 
rule should be read “decide HI iff u3 = 1 or u1 = 1 
and either u2 = 1 or u4 = 1.” It should be stressed that 
Fig. 10 is by itself only a partial description, in that 
contiguous regions with an identical number of binary 
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The message here is 
that distributed 
detection can help in 
a certain “sweet 
spot” where 
cooperation between 
the DMs is effective. 
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•  Let’s	  compare	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  to	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  in	  
	  
•  SNR	  for	  linear	  detector	  is	  
•  SNR	  for	  sign	  detector	  is	  

•  This	  is	  why	  “you	  lose	  2dB”	  (2/π).	  

How	  Much	  Do	  You	  Lose?	  
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•  Tradi6onal	  criteria:	  
–  Neyman-‐Pearson	  maximizes	  Pd	  for	  fixed	  Pfa.	  
–  Bayes	  minimizes	  average	  cost	  (needs	  priors).	  
–  Can	  show	  that	  Bayes	  op6mal	  is	  op6mal	  for	  its	  (Pd,	  Pfa).	  

•  Can	  also	  design	  DM	  to	  op6mize	  mutual	  informa6on:	  
	  
	  
Unfortunately	  this	  turns	  out	  to	  be	  no	  simpler	  than	  
op6mizing	  under	  Neyman-‐Pearson	  or	  Bayes.	  
–  The	  reason	  is	  that	  u0	  requires	  the	  fusion	  rule.	  

Alterna6ve	  Ways	  to	  Op6mize	  
1
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•  These	  simply	  try	  to	  pass	  good	  DM	  data	  to	  the	  FC	  
–  mutual	  informa6on:	  
	  

–  J-‐divergence:	  
	  

–  Bha,acharyya	  affinity:	  
	  

–  Also	  efficacy,	  KL-‐divergence	  …	  any	  Ali-‐Silvey	  distance.	  

•  It	  can	  be	  shown	  that	  all	  these	  result	  in	  likelihood	  
ra6o	  quan6za6ons	  at	  the	  sensors.	  

Simpler	  Subop6mal	  Criteria	  
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Why	  Care	  About	  The	  Quan6za6on?	  
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The Gaussian 
case (additive 
signal: +/-1) with 
M=3 levels of 
quantization 
corresponding to 
LLR thresholds 
-0.5 and +1.0. 

- Willett & Warren, “Optimum Quantization for Detector Fusion: Some Proofs, Examples, and Pathology,” JFI 1999. 
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Gauss-‐mixture	  and	  Cauchy	  Cases	  
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As can be seen, the quantization regions are no 
longer simply-connected in the observation space. 
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Use	  of	  Distance	  Proxies	  
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Figure 8: Quantizer optimized under Neyman-Pearson ( = .01) and J-divergence, for additive

signal in Cauchy noise situation of example 2.

36

This shows the result of 
optimizing J-divergence for 
a 4-level quantization in 
Cauchy noise. Note the 
similarity of the optimized 
quantizer to the proxy one. 
Note also that the proxy 
quantizer does not depend 
on the desired false alarm 
rate, while the N-P optimal 
quantizer does. 
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•  Suppose	  we	  have	  the	  likelihood	  ra6o	  H0	  pdf	  
	  
	  

•  We	  need	  to	  have	  this	  have	  unity	  mean	  for	  validity.	  

Some	  Strange	  Things	  Happen	  
that due to dependence, the quantizer levels in the second case are meaningless and are not

shown. The ROC curves under both assumptions are shown in figure 10. Since the dependence

assumption more accurately models the problem, the resulting ROC dominates that found when

independence is assumed.

Example 4 Suppose that three sensors (N = 3) observe mutually independent data and that

the likelihood ratio of the data has density

fH0(x) =

T
z

Z

c

1+[k(x� 1
2 )]

2 +
c

1+[k(x� 3
2 )]

2 0 � x � 2

0 else

under H0 and xfH0(x) under H1). The constant c is chosen to normalize the density and

k = 100. Each sensor uses binary quantization (Mi = 2).

This example is discussed in [29, 28]. It can be shown that if identical thresholds are used

at all of the sensors, the optimal test (given the identical threshold constraint) will require a

randomized fusion rule. Such tests were posited to be sub-optimal in [28], although an excellent

recent article [30] indicates that this is true over a more restricted class than was previously

believed. In any case, when the constraint is removed, randomization is no longer necessary.

The optimal thresholds for the unconstrained case are shown in figure 11 as a function of . In

the figure, the partitions labeled AND, OR, and MAJORITY refer to the optimal fusion rule

logic for the test levels within the partitions. Note that the three thresholds are not in general

equal. Intuition suggests that if the sensors are quantizing i.i.d. random variables, then the

quantizers used should be identical; this, however, is not always true. It should also be noted

that for any prior probabilities, the operating points for a system optimized with respect to either

global mutual information or Bayes cost must lie on the ROC curve for Neyman-Pearson optimal

detectors. Hence, for i.i.d. sensor observations and identical channel constraints, the optimal

detectors for the Bayes and mutual information criteria may use di&erent sensor quantizers.

From this somewhat pathological example we draw some conclusions in the following section

VII.

VII Identical Quantization for Identical Sensors

In the previous example 4, independent and identically-distributed sensor data with local like-

lihood ratio densities di&erentiable to arbitrary order gives rise, optimally, to di&erent sensor

mapping functions [28]. When does this happen, and when can we reasonably ignore the pos-

sibility? Certainly it is known to occur when sensor likelihood ratios contain point masses of

probability; yet example 4 does not contain point masses.

Here we provide some answer. It will turn out that there is a threshold in terms of point-

mass behavior of the likelihood ratio densities; once these densities are su^ciently “peaky”,

non-identical sensor quantization functions ought to be used.
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Figure 13: Likelihood ratio density functions for the “pathological” example 4, di&erent k para-

meters.
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We	  Op6mize	  for	  n=3	  “Iden6cal”	  DMs	  
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Figure 11: Thresholds for “pathological” case of example 4. Here the sensors are independent

(conditioned on hypothesis) and identical, yet the three sensors employ di&erent thresholds. The

fusion rules which happen to be optimal are also given.
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The optimal fusion rule 
changes from AND to 
Majority-logic to OR as Pfa 
increases. 
 
In the case k=100 (very 
nearly point masses) the 
optimal thresholds turn out to 
be different at the various 
DMs. 
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•  Consider	  the	  case	  n=5	  and	  Gaussian	  mixture	  noise	  
	  
	  

•  Either	  all	  DMs	  get	  low	  noise	  or	  all	  high	  noise.	  

Dependent	  DMs	  Example 3 Suppose we have ten sensors (N = 10) that are capable of transmitting one of five

possible messages (Mi = 5) each. With Yi representing the observation at the i
th sensor, the

detection problem can be written as

H0 : Yi = (1� Z)N1i + ZN2i

H1 : Yi = Si + (1� Z)N1i + ZN2i

Here {Si}10i=1, {N1i}10i=1, and {N2i}10i=1 are all independent, zero-mean and Gaussian, with E(S2i ) =
E(N2

1i) = 1 and E(N
2
2i) = 10. The binary random variable Z takes on values 0 and 1 with re-

spective probabilities 90% and 10% and has the same value at all of the sensors.

This example is used to demonstrate the e&ect of dependence among the sensors. Without

the high power noise process, the model conforms to the unknown (Gaussian) signal in Gaussian

noise problem. When the N2i process is included we have added the possibility of jamming:

there is a 10% probability that all of the sensors will be jammed, and a 90% probability of no

jamming.

For each sensor the statistic Xi = Y 2i is su^cient. Since Yi is always Gaussian, Xi, condi-

tioned on the hypothesis and the presence or absence of jamming, will have a Rayleigh density

given by:

fR(x;�
2) =

l
x
�2 e
�x2/2�2 x � 0
0 else

Here, �2 will depend on both the hypothesis and the value of Z. Hence, the univariate density

of Xi is

f(xi) = (1� 6)fR(xi; 1 + �) + 6fR(xi; 11 + �) (28)

and the joint density of the observations is

f(x1, x2, . . . , x10) = (1� 6)
10�

i=1

fR(xi; 1 + �) + 6

10�

i=1

fR(xi; 11 + �)

Here 6 = 0.1, while � = 0 under H0 and � = 1 under H1.

We consider two cases of quantizers optimal under the Bhattacharyya criterion. First, we

maximize the Bhattacharyya distance of Ui, the (quantized) output of each sensor; this is equiv-

alent to the assumption that the sensor observations are independent with the density given by

Eq. (28). Second, we maximize the Bhattacharyya distance for U; that is, for the ensemble

input to the fusion center. In figure 9, we plot the logarithm of the local likelihood ratio, the

quantizer that results from the first maximization, and we indicate the thresholds that are used

to quantize the data for the latter maximization. As expected, the independence assumption

results in a quantization of the local likelihood ratio as specified by (28). The fact that inclusion

of the dependence results in a quantization of the data Xi is not surprising; a large value of Xi

is indicative of jamming at the ith sensor which in turn implies jamming at all sensors. Note
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Figure 9: Quantizers optimized under Bhattacharyya criterion, for dependent situation of ex-

ample 3. Under an (incorrect) assumption of independence the result is a likelihood ratio quan-

tization; correctly assuming dependence results in a direct data quantization.
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Quantizers optimized under 
Bhattacharyya criterion. Under an 
(incorrect) assumption of independence 
the result is a likelihood ratio 
quantization; correctly assuming 
dependence results in a direct data 
quantization! This makes sense in that 
information about Z is contain in the data. 
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•  Perhaps	  the	  simplest	  case	  of	  dependent	  
observa6ons	  we	  can	  explore	  for	  quan6za6on	  is	  that	  
of	  correlated	  Gaussian	  noise,	  two	  sensors,	  binary	  
quan6za6on	  and	  an	  addi6ve	  signal.	  

•  Mathema6cally:	  
	  

•  There	  are	  clearly	  only	  three	  fusion	  rules	  possible:	  
AND,	  OR	  and	  XOR.	  

The	  Good,	  Bad	  and	  Ugly	  

WILLETT et al.: GOOD, BAD, AND UGLY: DISTRIBUTED DETECTION OF A KNOWN SIGNAL 3267

• Drakopoulos and Lee [7] and Kam et al. [9] examine opti-
mization and performance of the fusion rule under depen-
dence.

• Warren and Willett [22] give an example of quantization
under a distance-measure criterion, which, when opti-
mized, cannot result from a likelihood ratio thresholding.

• Tang et al. [13] examine the general -ary hypothesis
problem from a numerical perspective.

• Blum et al. [4] examine a non-Gaussian version of the cur-
rent problem, with noise restricted to be circularly sym-
metric.

• Lin and Blum [10] continue the previous study in a more
general framework and uncover a remarkable complexity
of behavior.

Much of what is known in the dependent case has been found
through numerical study. To date, no “rules” similar to those
so useful in the conditionally independent case have evolved.
If there are rules to be found, the most logical place to look
for them is in the simplest problem. For this, our proxy is the
binary-quantized Gaussian shift-in-mean problem, usually with

observations (sensors). As such, our contribution is most
closely related to and indeed builds on the work of Chen and
Papamarcou [6].

B. General Modeling and Outline
With reference to (1), a traditional, one-bit of communica-

tion per sensor, distributed detection system has each sensor in-
dependently processing its own observation, yielding a binary
variable and transmitting this bit to a fusion center. Typically,
each is defined by a set inclusion function

(3)

where each is a (possibly infinite) union of intervals

(4)

Since our interest is in continuous distributions and , we
ignore the interval endpoints. (Further, although from a mathe-
matical perspective it may be desirable to have these be gen-
eral measurable sets rather than unions of intervals, there is great
notational burden and little point in doing so for the Gaussian
situations of interest here.) The fusion center combines these
“partial decisions” into a global decision to optimize the
overall system performance. As we will discuss further later, in
the two-sensor situation, this fusion rule can be any of AND, OR,
or XOR (exclusive-or), with the “ignore one sensor” rules taken
as special cases of any of these.
In this paper, we concern ourselves with the case that the den-

sities and in (1) be multivariate Gaussian. For the most
part, we restrict attention to the two-sensor (bivariate Gaussian)
situation. We ask, by way of our quest for canonical “rules,” the
following.
1) Assuming an AND rule, are the always simply con-
nected? That is, is it in all cases possible to compute
using a single threshold on ?

2) If not, are the never simply connected?
3) With respect to the above two questions, what happens for
the OR and XOR rules?

4) Can we avoid consideration of one or more of the fusion
rules (XOR, for example) since it is never optimal?

5) Is there any situation in which the data from one sensor is
ignored?

6) Can we at least say that no more than two thresholds are
needed for quantization?

It will be proven that the answer to the first two questions is
negative. We will decompose the “space” of mean-shifts into
three regions, coined “good,” “bad,” and “ugly.” In the first
of these, it is always possible to compute using a single
threshold on the data, and in the second, it is never possible.
Thus, we have a rule similar to that governing the condition-
ally independent case; unfortunately, no rule is forthcoming for
the “ugly” region, although we are able to show that a single-
threshold quantization rule offers a person-by-person optimal
(PBPO) solution, meaning that many optimization routines, in-
cluding the Gauss–Seidel scheme we use, will get “stuck” if ini-
tialized with single thresholds or if a single-threshold solution
is found. With regard to the third question, the behavior of the
OR rule is similar to that of the AND rule. Again, unfortunately,
there is little to be done for XOR—we show numerically that
whatever “regions” may pertain, they do not easily correspond
to those for the AND/OR rules. In fact, we are able to prove that
single-threshold quantizers never form an optimal quantization
for an XOR fusion rule; the XOR rule is in a sense always ugly.
It is thus tempting to hope that the fourth question may be an-
swered in the affirmative, particularly since it is easily seen to be
true for the conditionally independent case (the XOR rule would
not be a likelihood ratio test from the fusion center’s point of
view). It is generally difficult to prove superiority of one fusion
rule over another unless the latter is clearly a bad idea; however,
we show numerically a number of situations in which the XOR
rule is optimal. With regard to the fifth question, it should be
understood that in the conditionally independent (Gaussian) sit-
uation, this is never true since, regardless of SNR, one sensor’s
observation can always be of sufficient certainty to contradict
the other. It is thus perhaps surprising that we are able to prove
the answer to the fifth question is “yes.” It may be clear that the
last question may be asked in a tone of frustration; unfortunately
the answer “no” is scarcely placatory.
The bottom line, therefore, is that even this simple bivariate

Gaussian shift-in-mean problem is remarkably weird. As to our
stated goal of finding “rules” similar to that for the condition-
ally independent case, we are partially successful in doing this,
and we give these results in the following Section II. In Sec-
tion III, we give the results of extensive numerical experience
involving all fusion rules. Section IV is the extension of our
“good” and “bad” regions to the multivariate case. We conclude
in Section V.

II. ANALYTIC RESULTS FOR THE BIVARIATE CASE

A. Gaussian Model and Background for Binary Fusion
In this paper, we are particularly concerned with hypotheses

of correlated Gaussian data with different mean vectors

(5)

-  Chen & Papamarcou, “Likelihood ratio partitions for distributed detection in correlated Gaussian noise,” ISIT 1996. 
-  Willett, Swasek & Blum, “The Good, Bad, and Ugly: Distributed Detection of Known Signal in Correlated Gaussian Noise,” TSP 2000. 
 



Slide	  29	  NATO STO IST-155, Willett 

The	  Regions	  

WILLETT et al.: GOOD, BAD, AND UGLY: DISTRIBUTED DETECTION OF A KNOWN SIGNAL 3269

Fig. 1. Examples of centralized and distributed tests for “nice” sets of parameters and . The centralized test is shown by the straight line boundary; the
distributed AND rule’s decision region for is shaded. The notation at the lower left of each figure is the parameter set , , . Note that in the upper right-hand
example, the two boundaries are identical.

with threshold

Since the resulting optimum decision region is a half plane (see
Fig. 1 for examples), it is of interest to see if the distributed
detector’s decision region for (or ) resulting from solving
the necessary conditions above is a quarter plane approximation
to it.
While we have observed some interesting examples for both

AND and OR rules, we have also attempted to develop sufficient
conditions for the iterative algorithm with the AND rule to con-
verge to a solution of single semi-infinite intervals for both
and . This is in contrast to the results in [6], which provide
a sufficient condition for a global solution of single semi-infi-
nite intervals for the AND rule. Below, we state our results on the
AND rule. The results can be described graphically as a division
of the signal plane into three regions: good, bad, and
ugly (see Fig. 2).
1) Properties of the Good Region: Let us concentrate on the

AND rule and (11). We define

(12)

It is straightforward to differentiate this to obtain

(13)

Fig. 2. Division of the signal plane into three regions.

Now

(14)

and

(15)

hence

(16)

in which

(17)

It turns out that we have different behaviors 
depending on the interplay between signal 
and correlation. 
 
Good: Quantizers are single-interval and 
the FC is AND or OR. 
 
Bad: AND/OR quantizers either ignore one 
sensor or are non-simply connected.  
 
Ugly: Little is known, except that AND/OR 
quantizers are often non-simply connected 
and that XOR rules can be optimal. 
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XOR	  is	  Op6mal?	  
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Fig. 14. Optimal decision for XOR rule and signal : a point
in Fig. 13. An observation in the shaded region results in a decision for .

decreases monotonically from to , passing through zero at
. Define the first term

Now, we have

(36)

From (36), we have that is either both or nei-
ther in , meaning that if is quantized according to

, then cannot be quantized using a single
threshold. The proof for follows
similarly.
Thus, for the XOR rule, either at least one of the quantizers

should optimally use multiple thresholds, or one of the data is
ignored. Considering the shape of the decision regions implied
by the XOR rule with single-threshold quantizers—first and third
quadrants mapped to one decision and second and fourth to the
other—the result is intuitive. We shall see examples of this in
Fig. 16.

III. NUMERICAL STUDY OF OPTIMAL QUANTIZATION

We have performed two sorts of tests. In the first, we take
and allow the vector to trace a quarter-circle;

since there is no qualitative difference between and
, we interrogate angles only between and . In

Figs. 7–9 we show the behavior for . In Fig. 7, note
that there is indeed a set (in the “ugly” region) in which the XOR
rule is optimal. From the others, note the relative dominance of
the AND rule for and the OR rule for —this pat-
tern appears to be general. The suboptimality of the quantized
detector is greatest in the “ugly” region, as can be explained by

Fig. 15. Optimal decision for AND rule at the same point as in Fig. 14. An
observation in the shaded region results in a decision for .

Fig. 16. Optimal quantizations for XOR fusion rule and various signals
and .

the orientation of the probability ellipses; any quantization must
“cut” each to some degree.
In the second set of tests, we optimize under the various fu-

sion rules for a set of signal points generated randomly and uni-
formly on , and unless otherwise
noted, we have . In Figs. 10, 12, 13, 16, and 17, the
“good” region is that set of in the wedge between the
two dashed lines, the “bad” region is the complement of this for
positive , and the “ugly” region is all that for negative.
In Fig. 10, we show the various AND rule quantizations for
. Observe that in the “bad” region, we have two behaviors:

ignore one of the observations, and quantize one of the observa-
tions with two thresholds, the latter being exemplified in Fig. 11.
In this case ( ), it happens that neither the OR nor
the XOR rules is ever best. Fig. 12 corresponds to Fig. 10, except
that here, the threshold ; for this lowered threshold, the
multiple-region quantization behavior observed in Fig. 10 is not
observed.

XOR-imputed decision regions. 
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Fig. 14. Optimal decision for XOR rule and signal : a point
in Fig. 13. An observation in the shaded region results in a decision for .

decreases monotonically from to , passing through zero at
. Define the first term

Now, we have

(36)

From (36), we have that is either both or nei-
ther in , meaning that if is quantized according to

, then cannot be quantized using a single
threshold. The proof for follows
similarly.
Thus, for the XOR rule, either at least one of the quantizers

should optimally use multiple thresholds, or one of the data is
ignored. Considering the shape of the decision regions implied
by the XOR rule with single-threshold quantizers—first and third
quadrants mapped to one decision and second and fourth to the
other—the result is intuitive. We shall see examples of this in
Fig. 16.

III. NUMERICAL STUDY OF OPTIMAL QUANTIZATION

We have performed two sorts of tests. In the first, we take
and allow the vector to trace a quarter-circle;

since there is no qualitative difference between and
, we interrogate angles only between and . In

Figs. 7–9 we show the behavior for . In Fig. 7, note
that there is indeed a set (in the “ugly” region) in which the XOR
rule is optimal. From the others, note the relative dominance of
the AND rule for and the OR rule for —this pat-
tern appears to be general. The suboptimality of the quantized
detector is greatest in the “ugly” region, as can be explained by

Fig. 15. Optimal decision for AND rule at the same point as in Fig. 14. An
observation in the shaded region results in a decision for .

Fig. 16. Optimal quantizations for XOR fusion rule and various signals
and .

the orientation of the probability ellipses; any quantization must
“cut” each to some degree.
In the second set of tests, we optimize under the various fu-

sion rules for a set of signal points generated randomly and uni-
formly on , and unless otherwise
noted, we have . In Figs. 10, 12, 13, 16, and 17, the
“good” region is that set of in the wedge between the
two dashed lines, the “bad” region is the complement of this for
positive , and the “ugly” region is all that for negative.
In Fig. 10, we show the various AND rule quantizations for
. Observe that in the “bad” region, we have two behaviors:

ignore one of the observations, and quantize one of the observa-
tions with two thresholds, the latter being exemplified in Fig. 11.
In this case ( ), it happens that neither the OR nor
the XOR rules is ever best. Fig. 12 corresponds to Fig. 10, except
that here, the threshold ; for this lowered threshold, the
multiple-region quantization behavior observed in Fig. 10 is not
observed.

AND-imputed decision regions. 

XOR turns out to be optimal here. Neither is simply-connected. 
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•  In	  a	  communica6ons-‐constrained	  system	  it	  is	  
intui6ve	  that	  one	  does	  not	  “send”	  informa6on	  unless	  
what	  one	  has	  is	  worth	  sending:	  
	  
	  

•  Maximize	  FC’s	  Pd	  subject	  to	  constraint	  on	  Pfa	  and	  
	  
	  

•  Naturally	  there	  is	  a	  Bayesian	  version	  of	  this	  too.	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

Censoring	  Sensors	  

In Section IV we present numerical examples.
In Section V we explore the use of feedback to
achieve minimum probability of error with very little
communication.

II. FORMULATION OF THE PROBLEM

Suppose that we have N “independent” sensors,
that is, sensors whose observations are statistically
independent when conditioned on whether hypothesis
H (no target) or hypothesis K (a target is present) is
true. Each sensor is connected, through some kind of
channel, to a fusion center (FC) and here we impose
the constraint that the average communication rate
(see (2)) between each sensor and the FC does not
exceed a certain limit (communication rate constraint).
The basic idea behind the censoring scheme is to

assign to each sensor an associated observation space
partition, i.e., two regions Ri and Ri (respectively send
and no-send regions for sensor i) such that if the LLR
of sensor i belongs to the send region, the sensor sends
the LLR to the FC and if not, the sensor does not
send anything. This idea is schematically presented
in Fig. 1. We assume that the regions Ri and Ri are
such that the average communication rate constraint is
satisfied. Hence, transmissions to the FC take the form
of ½

li(Xi) 2 Ri li(Xi) is sent
li(Xi) 2 Ri nothing is sent

¾
(1)

where Xi is the observation at the ith sensor and li(¢)
denotes the LLR. Note that if li(Xi) lies in Ri (the send
region) then its likelihood ratio is sent unquantized.
The motivation here is that with so many “gaps” in
the data it will be necessary to time/space/Doppler tag
all sensor-to-fusion-center transmissions, and as such
there is little point in following all this by adulterated
information. Note also that there is an implied
ordering to the sensors’ communications of resolution
cell data: if a transmission has been received by the FC
from cells “before” and “after” a given resolution cell,
then no transmission therefrom can be expected and
decision fusion can begin. If the paucity of false alarms
and detections is such that too great a time (say, a
full scan) elapses with no transmission, then it may be
necessary to insert some sort of artificial transmission
to that effect–we mention this to avoid confusion, but
in general would prefer to leave such considerations to
the knowledgeable system-level designer.
In the Bayesian situation the average

communication constraint takes the form

¦H

NX

i=1

Pr(li(Xi) 2 Ri jH)

+¦K

NX

i=1

Pr(li(Xi) 2 Ri j K)· ·B ·N (2)

where ¦H , ¦K are the prior probabilities of the
hypotheses. In the Neyman—Pearson case there are
no reasonable prior probabilities for the hypotheses;
however, an appropriate redefinition of the constraint
is

NX

i=1

Pr(li(Xi) 2 Ri jH)· ·NP ·N: (3)

The units of ·B and ·NP are communications per
resolution cell; if a sufficiently faithful rendition of the
likelihood ratio plus tag information requires q bits,
then (2) (for example) says that each sensor is allotted
on average q·B=N bits per resolution cell as its
“bandwidth”. In the more usual implementation of
[2, 8, 13, 15] this apportionment is fixed; under
censoring it is dynamic, with sensors having
informative data being quite vocal, and those without
being silent. To be concrete, let us assume N = 4
and q= 24 bits per transmission. In a fixed scheme
the constraint ·B = 1=6 corresponds to each sensor
transmitting binary data (yes/no local decisions) to
the fusion center; under censoring ·B = 1=6 means
that each sensor transmits, on average, the likelihood
ratio of one resolution cell out of 24, and remains
silent for the remaining 23. Conversely, with ·B < 1=6
it is unclear what a fixed scheme should do (data
compression coding is of course a possibility, but
its vulnerability to errors makes this unappetizing);
however, under censoring there is no problem.
At any rate, under this censoring scheme, the

optimal fusion rule is (and must be) a likelihood ratio
test over the received and nonreceived LLRs given by

LFC(l1, l2, : : : , lN) =
Y

i : li2Ri

li£
Y

i : li2Ri

Pr(li 2 Ri j K)
Pr(li 2 Ri jH)

K
><
H

¿FC

(4)
where li is the LLR of sensor i, and ¿FC is the
threshold used at the FC. Note that the lack of a
transmission from a given sensor does not mean that
no information is sent, but rather that the FC is aware
only of the imprecise knowledge that li 2 Ri.
In the next sections we show that, under the above

conditions, we optimally (minimum probability of
error, maximum probability of detection or maximum
distance) have

Ri = fli : t1i · li(X )· t2ig: (5)

That is, only extremal, or very informative, likelihood
ratios are transmitted; optimization is thus simplified in
that instead of a search for some arbitrary sets fRigNi=1,
only ft1i, t2igNi=1 must be chosen.
The following notation is used in the rest of the

paper.

li Likelihood ratio for sensor i.
~l Likelihood ratio vector (~l = [l1 l2 ¢ ¢ ¢ lN]).
~li Likelihood ratio vector without that of

sensor i (~li = [l1 ¢ ¢ ¢ li¡1li+1 ¢ ¢ ¢ lN]).
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In Section IV we present numerical examples.
In Section V we explore the use of feedback to
achieve minimum probability of error with very little
communication.

II. FORMULATION OF THE PROBLEM

Suppose that we have N “independent” sensors,
that is, sensors whose observations are statistically
independent when conditioned on whether hypothesis
H (no target) or hypothesis K (a target is present) is
true. Each sensor is connected, through some kind of
channel, to a fusion center (FC) and here we impose
the constraint that the average communication rate
(see (2)) between each sensor and the FC does not
exceed a certain limit (communication rate constraint).
The basic idea behind the censoring scheme is to

assign to each sensor an associated observation space
partition, i.e., two regions Ri and Ri (respectively send
and no-send regions for sensor i) such that if the LLR
of sensor i belongs to the send region, the sensor sends
the LLR to the FC and if not, the sensor does not
send anything. This idea is schematically presented
in Fig. 1. We assume that the regions Ri and Ri are
such that the average communication rate constraint is
satisfied. Hence, transmissions to the FC take the form
of ½

li(Xi) 2 Ri li(Xi) is sent
li(Xi) 2 Ri nothing is sent

¾
(1)

where Xi is the observation at the ith sensor and li(¢)
denotes the LLR. Note that if li(Xi) lies in Ri (the send
region) then its likelihood ratio is sent unquantized.
The motivation here is that with so many “gaps” in
the data it will be necessary to time/space/Doppler tag
all sensor-to-fusion-center transmissions, and as such
there is little point in following all this by adulterated
information. Note also that there is an implied
ordering to the sensors’ communications of resolution
cell data: if a transmission has been received by the FC
from cells “before” and “after” a given resolution cell,
then no transmission therefrom can be expected and
decision fusion can begin. If the paucity of false alarms
and detections is such that too great a time (say, a
full scan) elapses with no transmission, then it may be
necessary to insert some sort of artificial transmission
to that effect–we mention this to avoid confusion, but
in general would prefer to leave such considerations to
the knowledgeable system-level designer.
In the Bayesian situation the average

communication constraint takes the form

¦H

NX

i=1

Pr(li(Xi) 2 Ri jH)

+¦K

NX

i=1

Pr(li(Xi) 2 Ri j K)· ·B ·N (2)

where ¦H , ¦K are the prior probabilities of the
hypotheses. In the Neyman—Pearson case there are
no reasonable prior probabilities for the hypotheses;
however, an appropriate redefinition of the constraint
is

NX

i=1

Pr(li(Xi) 2 Ri jH)· ·NP ·N: (3)

The units of ·B and ·NP are communications per
resolution cell; if a sufficiently faithful rendition of the
likelihood ratio plus tag information requires q bits,
then (2) (for example) says that each sensor is allotted
on average q·B=N bits per resolution cell as its
“bandwidth”. In the more usual implementation of
[2, 8, 13, 15] this apportionment is fixed; under
censoring it is dynamic, with sensors having
informative data being quite vocal, and those without
being silent. To be concrete, let us assume N = 4
and q= 24 bits per transmission. In a fixed scheme
the constraint ·B = 1=6 corresponds to each sensor
transmitting binary data (yes/no local decisions) to
the fusion center; under censoring ·B = 1=6 means
that each sensor transmits, on average, the likelihood
ratio of one resolution cell out of 24, and remains
silent for the remaining 23. Conversely, with ·B < 1=6
it is unclear what a fixed scheme should do (data
compression coding is of course a possibility, but
its vulnerability to errors makes this unappetizing);
however, under censoring there is no problem.
At any rate, under this censoring scheme, the

optimal fusion rule is (and must be) a likelihood ratio
test over the received and nonreceived LLRs given by

LFC(l1, l2, : : : , lN) =
Y

i : li2Ri

li£
Y

i : li2Ri

Pr(li 2 Ri j K)
Pr(li 2 Ri jH)

K
><
H

¿FC

(4)
where li is the LLR of sensor i, and ¿FC is the
threshold used at the FC. Note that the lack of a
transmission from a given sensor does not mean that
no information is sent, but rather that the FC is aware
only of the imprecise knowledge that li 2 Ri.
In the next sections we show that, under the above

conditions, we optimally (minimum probability of
error, maximum probability of detection or maximum
distance) have

Ri = fli : t1i · li(X )· t2ig: (5)

That is, only extremal, or very informative, likelihood
ratios are transmitted; optimization is thus simplified in
that instead of a search for some arbitrary sets fRigNi=1,
only ft1i, t2igNi=1 must be chosen.
The following notation is used in the rest of the

paper.

li Likelihood ratio for sensor i.
~l Likelihood ratio vector (~l = [l1 l2 ¢ ¢ ¢ lN]).
~li Likelihood ratio vector without that of

sensor i (~li = [l1 ¢ ¢ ¢ li¡1li+1 ¢ ¢ ¢ lN]).
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•  The	  result	  is	  that	  the	  “no-‐send”	  LLR	  region	  is:	  

Censoring	  Region	  is	  an	  Interval	  

In Section IV we present numerical examples.
In Section V we explore the use of feedback to
achieve minimum probability of error with very little
communication.

II. FORMULATION OF THE PROBLEM

Suppose that we have N “independent” sensors,
that is, sensors whose observations are statistically
independent when conditioned on whether hypothesis
H (no target) or hypothesis K (a target is present) is
true. Each sensor is connected, through some kind of
channel, to a fusion center (FC) and here we impose
the constraint that the average communication rate
(see (2)) between each sensor and the FC does not
exceed a certain limit (communication rate constraint).
The basic idea behind the censoring scheme is to

assign to each sensor an associated observation space
partition, i.e., two regions Ri and Ri (respectively send
and no-send regions for sensor i) such that if the LLR
of sensor i belongs to the send region, the sensor sends
the LLR to the FC and if not, the sensor does not
send anything. This idea is schematically presented
in Fig. 1. We assume that the regions Ri and Ri are
such that the average communication rate constraint is
satisfied. Hence, transmissions to the FC take the form
of ½

li(Xi) 2 Ri li(Xi) is sent
li(Xi) 2 Ri nothing is sent

¾
(1)

where Xi is the observation at the ith sensor and li(¢)
denotes the LLR. Note that if li(Xi) lies in Ri (the send
region) then its likelihood ratio is sent unquantized.
The motivation here is that with so many “gaps” in
the data it will be necessary to time/space/Doppler tag
all sensor-to-fusion-center transmissions, and as such
there is little point in following all this by adulterated
information. Note also that there is an implied
ordering to the sensors’ communications of resolution
cell data: if a transmission has been received by the FC
from cells “before” and “after” a given resolution cell,
then no transmission therefrom can be expected and
decision fusion can begin. If the paucity of false alarms
and detections is such that too great a time (say, a
full scan) elapses with no transmission, then it may be
necessary to insert some sort of artificial transmission
to that effect–we mention this to avoid confusion, but
in general would prefer to leave such considerations to
the knowledgeable system-level designer.
In the Bayesian situation the average

communication constraint takes the form

¦H

NX

i=1

Pr(li(Xi) 2 Ri jH)

+¦K

NX

i=1

Pr(li(Xi) 2 Ri j K)· ·B ·N (2)

where ¦H , ¦K are the prior probabilities of the
hypotheses. In the Neyman—Pearson case there are
no reasonable prior probabilities for the hypotheses;
however, an appropriate redefinition of the constraint
is

NX

i=1

Pr(li(Xi) 2 Ri jH)· ·NP ·N: (3)

The units of ·B and ·NP are communications per
resolution cell; if a sufficiently faithful rendition of the
likelihood ratio plus tag information requires q bits,
then (2) (for example) says that each sensor is allotted
on average q·B=N bits per resolution cell as its
“bandwidth”. In the more usual implementation of
[2, 8, 13, 15] this apportionment is fixed; under
censoring it is dynamic, with sensors having
informative data being quite vocal, and those without
being silent. To be concrete, let us assume N = 4
and q= 24 bits per transmission. In a fixed scheme
the constraint ·B = 1=6 corresponds to each sensor
transmitting binary data (yes/no local decisions) to
the fusion center; under censoring ·B = 1=6 means
that each sensor transmits, on average, the likelihood
ratio of one resolution cell out of 24, and remains
silent for the remaining 23. Conversely, with ·B < 1=6
it is unclear what a fixed scheme should do (data
compression coding is of course a possibility, but
its vulnerability to errors makes this unappetizing);
however, under censoring there is no problem.
At any rate, under this censoring scheme, the

optimal fusion rule is (and must be) a likelihood ratio
test over the received and nonreceived LLRs given by

LFC(l1, l2, : : : , lN) =
Y

i : li2Ri

li£
Y

i : li2Ri

Pr(li 2 Ri j K)
Pr(li 2 Ri jH)

K
><
H

¿FC

(4)
where li is the LLR of sensor i, and ¿FC is the
threshold used at the FC. Note that the lack of a
transmission from a given sensor does not mean that
no information is sent, but rather that the FC is aware
only of the imprecise knowledge that li 2 Ri.
In the next sections we show that, under the above

conditions, we optimally (minimum probability of
error, maximum probability of detection or maximum
distance) have

Ri = fli : t1i · li(X )· t2ig: (5)

That is, only extremal, or very informative, likelihood
ratios are transmitted; optimization is thus simplified in
that instead of a search for some arbitrary sets fRigNi=1,
only ft1i, t2igNi=1 must be chosen.
The following notation is used in the rest of the

paper.

li Likelihood ratio for sensor i.
~l Likelihood ratio vector (~l = [l1 l2 ¢ ¢ ¢ lN]).
~li Likelihood ratio vector without that of

sensor i (~li = [l1 ¢ ¢ ¢ li¡1li+1 ¢ ¢ ¢ lN]).
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Censoring:	  CA-‐CFAR	  Example	  

Fig. 2. Average communication per sensor needed in censoring

scheme to reach same global probability of detection as optimal

binary scheme (CA-CFAR, ®= 10¡4 in all cases). In censored
system 24 bits per transmission assumed; as such, binary/parallel

scheme requires constant 1/24 transmissions per sensor.

that as it increases there is a “saturation” effect. To

avoid confusion, let us discuss this. In general, the

fusion rule is a threshold test of a likelihood ratio

having both point-mass and continuous characteristics.

Now, it is readily apparent that as the SNR at each
sensor increases, the communication required for a

censored system to achieve a specified performance

decreases; this, coupled with a low ®global and the
results seen in Section IIIC, means that the lower

thresholds of the no-send regions for each sensor

become zero. When the communication per sensor

is equal to 1¡ (1¡®global)N the fusion rule must be:
“decide K if any sensor transmits, otherwise decide

H” (censoring has lost some of its charm at this

operating point). Further, any attempt to decrease the

communication below this level results in the necessity

for a randomized fusion rule (“sometimes decide for

K even when no sensor transmits”) which would
perform very poorly indeed. The upshot: saturation

in Fig. 2.

Next, we present a computational analysis for the

CA-CFAR and Gaussian examples assuming that the
priors are known (i.e., the Bayesian case).
For the CA-CFAR case we have selected the

SNR S = 10 dB, and three identical sensors (because
the LLRs are conditionally independent, the total

communication rate constraint is here assumed to be

divided equally among the sensors–it is at present

open as to whether this is optimal); note that Xi is
not the LLR but rather a monotone transformation

of it. The observations of each of the three sensors

are assumed to have identical and conditionally

independent statistics. The problem has been analyzed

both numerically and, as a check, via Monte Carlo

simulation. In the first case, the probability density

function of the likelihood ratio at the FC (4) was

computed numerically, and according to the procedure

Fig. 3. Probability of error for CA-CFAR problem (SNR= 10 dB,

8-cell reference window, three sensors) versus probability of target

present for various communication rate constraints.

summarized at the end of Section IIIA, a minimization

routine was used to determine the optimum no-send

region and the corresponding probability of error.

Then the minimum average error for a finite set of

possible no-send regions (each one satisfying the

communication rate constraint) was evaluated via

Monte Carlo runs. Both results are shown in Fig. 3.

We can see that even for a relatively small “average

communication rate constraint” (defined as in (2))

the system performance is good for extreme priors;

that is, low ¦K or ¦H . Note that the censoring system
performs close to optimally when one hypothesis is

much more probable than the other, which is the

situation of interest here. The probability of error

computed via Monte Carlo simulation is very near

the one computed numerically. In Fig. 4 we show

the upper and lower thresholds of the “no-send”

region over the data axis (see (11)). We observe that

as ¦K ! 0 the no-send region is any LLR smaller than

an upper threshold; as ¦K ! 1 this eventually switches

to any LLR greater than a lower threshold. For some

communication rate constraints there is a region of

¦K for which both extremes of the no-send region are
finite and non-zero.

In the Gaussian example, the problem can be

formulated as

H : Xi is Gaussian with mean zero and variance 1

K : Xi is Gaussian with mean and variance 1:

(14)

In Figs. 5 and 6 we see the results for this example.

The same conclusions as before apply to this case,

the difference being that the probability of error and

no-send region are symmetric with respect to the

priors.
Next, we show the performance of the censoring

scheme under the Neyman—Pearson criterion. We

have assumed two “equal” sensors with CA-CFAR

558 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 32, NO. 2 APRIL 1996

Fig. 4. Upper and lower extremes for no-send region in
CA-CFAR problem (SNR= 10 dB, 8-cell reference window, three
sensors) for various communication rate constraints. (If lower
threshold is not shown it is 0; if upper threshold is not shown

it is 1.)

Fig. 5. Probability of error for Gaussian problem (¹H = 0, ¹K = 1,
¾ = 1, three sensors) versus probability of target present for

various communication rate constraints.

Fig. 6. Upper and lower extremes for no-send region in Gaussian
problem (¹H = 0, ¹K = 1, ¾ = 1, three sensors) for various

communication rate constraints. (If lower threshold is not shown it
is ¡1; if upper threshold is not shown it is 1.)

Fig. 7. Probability of detection versus probability of false alarm in
CA-CFAR problem (SNR= 10 dB, 8-cell reference window, two

sensors) for various communication rate constraints.

Fig. 8. Probability of detection versus average communication
constraint in CA-CFAR problem (SNR= 10 dB, 8-cell reference
window, two sensors) for two different probabilities of false alarm.
Horizontal lines correspond to uncensored (i.e., optimal) scheme.

observations. The ROCs for various average
communication constraints are shown in Fig. 7
together with the optimal. The censored scheme
performs very well for low probabilities of false
alarm, and at a certain point (as we increase the
probability of false alarm) we can observe a change
in the behavior of the system. It turns out that this
point is where the FC must use randomization to
obtain the desired probability of false alarm. Fig. 8
shows the probability of detection as a function of the
average communication constraint for various (fixed)
probabilities of false alarm. The point here is that
even with a strict communication constraint the
system performs nearly optimally for average
communication constraints larger than the probability
of false alarm.
To explore the result under the distance-measure

viewpoint, we have computed the optimal thresholds
for two different distance measures, J-divergence
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Optimal thresholds for CA-CFAR 
problem (SNR=10dB, 8 reference 
cells) and Bayesian case, plotted as a 
function of the target-presence 
probability. 

Communication rate needed to match 
performance of uncensored scheme 

(assumed to use 24 bits). 
False alarm rate is 0.01%. 

N is number of sensors. 
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•  Suppose	  there	  is	  a	  backward	  path	  from	  FC	  to	  DM:	  
	  
	  
	  
	  
	  
	  

•  The	  effect	  is	  to	  tell	  DM1	  (who	  said	  “no”)	  that	  DM2,	  
DM3	  &	  DM4	  said	  “yes”.	  
–  Is	  she	  is	  sure	  about	  her	  “no”?	  

•  This	  amounts	  to	  a	  lowered	  threshold	  for	  DM1.	  

Feedback	  

#
"

 
!Signal in noise

Fusion center

sensor 1

?
x1

6

?

sensor 2

?
x2

6

?

. . .

. . .

. . .

sensor N

?
xN

6

?

Figure 1: The distributed network with feedback.

4. Based upon the data fed back from the fusion center, each sensor requantizes its own original
data and transmits a new bit to the fusion center.

5. The successive operations described in (3) and (4) continue until the resulting estimation
error is su�ciently small. The fusion center than produces its conditional mean estimate
given all of the accumulated data.

Clearly, the performance of this distributed system is bounded by that of the centralized (unquan-
tized) estimator. Also, the resulting performance can be made as close to that of the centralized
system as desired by making the number of iterations of (3) and (4) large enough (and the rule for
setting the sensor thresholds non-pathological; for example, the sensors could implement succes-
sive approximation analog-to-digital conversion directly and ignore the feedback); hence, we will
concentrate on feedback and updating rules that generate good performance in minimal time.

We envision two distinct types of feedback and updating rules for this system:

1. The network is fully connected in that each sensor receives the entire set of bits transmitted
by all other sensors and updates its quantization rule accordingly (the fusion center, then,
acts as a broadcast channel). With such external data, each sensor at step (4) calculates its
own best threshold for comparison to its observation. (We suggest a greedy choice here in
order to reduce system complexity; the N thresholds are independently chosen to minimize
the overall MSE of the fusion center’s estimate given the previous transmissions at that
stage of iteration.) Since each sensor is essentially implementing a successive approximation
analog-to-digital converter (with thresholds modified by the received data), after m rounds
of transmission the entire system knows that each observation is located within some interval
[sj,m, tj,m), j = 1, 2, . . . N (with sj,0 = �1, tj,0 = 1), the entire observation vector, x within
a hyperprism. An appropriate stopping criterion, then, is the relative size of the hyperprism.

2
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•  The	  idea	  here	  is	  that	  each	  DM	  makes	  a	  Bayesian	  
decision	  at	  each	  step	  to	  minimize	  P(e).	  

•  The	  Bayesian	  LR	  test	  threshold	  is	  Pr(H0)/Pr(H1).	  
•  The	  feedback	  informa6on	  means	  Pr(H0)	  is	  modified	  
to	  be	  “posterior”:	  given	  all	  past	  informa6on.	  

•  That	  is,	  the	  test	  is:	  
	  
where	  Ui,m	  is	  all	  previous	  data	  (before	  6me	  m)	  from	  
all	  DMs	  except	  DM	  i.	  

Feedback:	  Bayesian	  Idea	  

topology is considered in [8, 9]; [10] considers more
general topologies and includes “peer communication,”
the distribution of all local decisions to all sensors. The
sequential test scenario with feedback is discussed in
[11].
Of interest here is the situation in which the

sensors have already received all of their data and
through the network (possibly employing a fusion
center) are trying to make a decision. In such a
situation several authors have assumed two rounds
of decision-making, an initial stage in which each
sensor transmits information about it own data and a
second in which each sensor incorporates information
from the other sensors. In these studies, the feedback
from the first round included the entire set of initial
decisions [12], only the number of dissenters [13], and
anything in between [14]. As one would expect with
only two rounds of parley, a consensus is unlikely. The
current study is fundamentally different from these
approaches in that the decision-making is occurring at
each sensor (truly decentralized detection, there is no
fusion center) and that the parleying continues until all
decision makers agree. To achieve a useful consensus
we note that it is necessary that not just the number
of “yes”s and “no”s be known, but from which sensor
each decision is derived.
We would like a consensus to be both timely and

correct. Unfortunately, simultaneous optimization of
both is impossible, and experience has shown that a
general optimization of some combination of the two
is infeasible. We examine two approaches to parley:
the greedy and the nth-root. Both are straightforward to
implement.
In the greedy approach, which to some extent may

be considered a “first-cut” at the problem and is dealt
with in detail in Section II, the assumption is that each
sensor, at each round of decision-making, makes an
optimum decision based on its current data (including
information from other sensors). We show that the
network does indeed converge to a consensus. Further,
for typical examples, this convergence is demonstrated
to be quite fast. Unfortunately (because of the greedy
nature of the network operation), in these examples
the resulting performance is only slightly better than
that obtainable by fusing the initial decisions.
In its traditional sense, parley is, at best, not

particularly speedy. As such, in the latter approach
we sacrifice haste entirely and constrain the decision
reached by the consensus to be optimum in the sense
that it would match that of a centralized processor
having access to all data. Since optimum decisions
equate to optimum performance, of major interest
is the delay (number of parleys required) until the
consensus is reached. As indicated above, we refer to
this as the nth-root approach (the reason for this will
be clear in Section III).

II. GREEDY NETWORK

A. Network Operation

The detection network examined here is assumed
to be engaged in binary hypothesis testing. Referring
to Fig. 1 we observe that there are n sensors, the ith of
which has received data xi, where fxigni=1 are assumed
mutually independent conditioned on the hypothesis.
The actual observations may be waveform, vector,
or scalar. The form is irrelevant since, as hypothesis
testing is to take place and given independence, the
(scalar) likelihood ratio is a sufficient statistic for the
data. The test is therefore to determine which of

H0 : xi » f0,i
H1 : xi » f1,i i= 1,2, : : : ,n (1)

is true, with fj,i the probability density function of xi
given Hj . We denote ¼0 as the prior probability of H0,
and similarly ¼1 (= 1¡¼0) as the prior probability of
H1. We also use

¤(xi)´
f1,i(xi)

f0,i(xi)
(2)

to denote the likelihood ratio of observation xi.
The criterion of optimality here is probability of

error although similar expressions can be constructed
for Bayes cost. That is, with ui,m 2 f0,1g the decision
of the ith sensor at stage m, then ui,m is chosen to
minimize

P(E)i,m = ¼0Pr(ui,m = 1 jH0)

+¼1Pr(ui,m = 0 jH1): (3)

based on the available data. Note that this is not
a globally optimal decision rule in that minimizing
P(E)i,m for all i and m need not result in minimum
probability of error of the consensus; such rules
are for this problem difficult to formulate and even
more difficult to work with. The rule used is greedy
(or “person-by-person optimal”), with each sensor
attempting to be as correct as possible at all times.
At any rate, let us define Ui,m ´

S
n<m

S
k 6=i uk,n (and

Ui,1 = Á); this is the data present in the network up
to stage m excepting that from sensor i. The optimal
(greedy) decision rule for ui,m can be written as

¤(xi)
ui,m=1

R
ui,m=0

¼0Pr(Ui,m jH0)
¼1Pr(Ui,m jH1)

: (4)

Due to its triviality we state this without proof; the
test is simply a Bayesian minimum probability of
error test with the usual prior probabilities replaced
by the posteriors. The posterior probabilities include
the priors and all information available up to stage
m in the network except that from sensor i; the
previous outputs fui,ngm¡1n=1 do not affect the threshold
at sensor i, but do, however, affect the meaning of
the other sensors’ revised decisions. Note that if xi
is equal to its threshold at stage m, then ui,m = 1.

448 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 31, NO. 1 JANUARY 1995

- Swaszek & Willett, “Parley as an Approach to Distributed Detection,” TAES 1995. 
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•  With	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  we	  have	  the	  example	  	  
	  
	  
	  
	  
	  
	  

•  Apparently	  DM1	  is	  pre,y	  convincing.	  	  
•  Convergence	  to	  a	  unanimous	  decision	  is	  guaranteed	  
via	  a	  Mar6ngale	  proof.	  

Feedback:	  Bayesian	  Example	  

Unlike Neyman-Pearson hypothesis testing where
randomization must be considered, under a Bayesian
criterion the decision when the likelihood ratio is equal
to the threshold may be chosen arbitrarily. Specifying
in this case that ui,m = 1 prevents a lock-up without
consensus.
This rule may be written in a number of equivalent

ways. With

¸i,m ´
¼0Pr(Ui,m jH0)
¼1Pr(Ui,m jH1)

(5)

defined as the threshold used by sensor i at stage m,
we can express

¸i,m =
¼0
¼1

Y

k 6=i

Pr(sk,m · ¤(xk)< tk,m jH0)
Pr(sk,m · ¤(xk)< tk,m jH1)

(6)

and say that the mth decision of sensor i is governed
by

¤(xi)
ui,m=1

R
ui,m=0

¸i,m: (7)

Here sk,m and tk,m are defined, respectively, as the
minimum and maximum values of ¤(xk) given
fuk,ngm¡1n=1 ; for concreteness sk,1 = 0 and tk,1 =1.
Simulation is most amenable to this form of the
test, and as such we refer to it as the practical
representation.
Additionally, we may define

¸m =
¼0
¼1

Y

k

Pr(sk,m · ¤(xk)< tk,m jH0)
Pr(sk,m · ¤(xk)< tk,m jH1)

(8)

or with Um ´
S
n<m

S
i ui,n

¸m =
¼0Pr(Um jH0)
¼1Pr(Um jH1)

(9)

to be the posterior likelihood ratio observed for the
entire network at stage m. In this case, the decision
rule for ui,m may be written as

¤(xi)
ui,m=1

R
ui,m=0

¸m (10)

where

¤m(xi) =
f1,i(xi)

f0,i(xi)

Pr(si,m · ¤(xi)· ti,m jH0)
Pr(si,m · ¤(xi)· ti,m jH1)

:

(11)

That is, the rule at each stage is a conditional
likelihood ratio test, where the conditioning at sensor i
is over the range where the remainder of the network
knows ¤(xi) is to be, and where the threshold ¸m
is common to all sensors. This form of the test is
probably most intuitive, and we call it the analytic
representation. Note that the implication of this form
of the test is that the network can be considered to
be “restarting” itself at each stage; the new likelihood
ratios are the conditional versions of the original
ones, and the threshold is no longer a ratio of the

TABLE I

Example of Decision-Making Process Using Greedy Approach

Note: In this case there are n= 4 sensors and the problem of

interest is tht of a shift-in-mean in Gaussian noise. Exhibited here

are the original data (in likelihood ratio form), the decisions at

each stage, and the thresholds used in arriving at those decisions.

original priors but rather a ratio of the posterior
probabilities of the hypotheses. In this formulation

the decisions at each stage are independent of one

another; the aggregate of intervals f(si,m, ti,m)gni=1
could be considered as a (nonhomogeneous) Markov

process.

For concreteness, let us consider the example

of the operation of a network shown in Table I. In

this case there are n= 4 sensors, and the problem
of interest is the Gaussian shift-in-mean of (16) with

s= 0:1. In the table we observe the data (actually the
local likelihood ratio ¤(xi) = e

0:2xi), the thresholds used

at each round of decision-making, and the decision

reached. Note that since we are using the practical

formulation, the data to be compared with the current

threshold does not change from round to round. After

the initial comparisons, two sensors report that they

believe H1 to be true, and two H0. In the second
round, the sensors essentially clarify how certain they

were as to their original decisions, as manifested by

those which reported H0 retesting against a lowered
threshold, and those which reported H1 retesting
against a raised one. It turns out that three of the four

sensors are “not very sure”; sensor 1, however, does

not change its declaration, and its “opinion” sways the

rest.

B. Theory

The following propositions give some idea of the

operation of the greedy network.

PROPOSITION 1 Given that um ´ [u1,m,u2,m, : : : ,un,m],
the decision vector after the mth parley, is not all zero or
all one, then we have that Pr(um+1 = um)< 1.

PROOF Any likelihood ratio ¤ must have its support
“centered” around unity, in the sense that probability

mass below unity implies probability mass above unity

and vice versa

Pr(¤< 1 jHk)> 0, Pr(¤> 1 jHk)> 0 (12)
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1

Help!
Me!

Sensor 1 Sensor 2 Sensor 3 Sensor 4

⇤(xi) .75 .92 1.15 1.03

�i,1 1.00 1.00 1.00 1.00

ui,1 0 0 1 1

�i,2 0.85 0.85 1.17 1.17

ui,2 0 1 0 0

�i,3 0.93 1.13 1.31 1.31

ui,3 0 0 0 0

August 24, 2016 DRAFT

product is 0.82 
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Feedback:	  Bayesian	  Results	  Fig. 2. Probability of error for CA-CFAR problem, S = 6 dB.

Fig. 3. Probability of error for Gaussian problem, s= 0:2.

Fig. 5. Probability that consensus occurs after given number of parleys, greedy strategy, for Gaussian problem with s= 0:2 and various

values of n.

Fig. 4. Average time to consensus for CA-CFAR (S = 6 dB) and

Gaussian (s= 0:2) problems.

and for n fixed, respectively, are shown. We observe
the following.

1) The probability of error achieved by the

parleying network is superior to that of an optimized

binary yes/no parallel scheme, and is comparable to

that of a parallel scheme in which sensors transmit

four-level versions of their observations to the fusion

center.

2) The superiority of parleying to binary parallel

in terms of probability of error is more pronounced for

smaller networks and less for larger networks. This is

perhaps not very clear from the plots shown, but the

implication is drawn from a wide variety of simulation

results.

3) The parleying network reaches a consensus on

average in less than two stages.
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Performance in the Gaussian shift-in-
mean problem as function of number 

of DMs. 

Fig. 6. Probability that consensus occurs after given number of parleys, greedy strategy, for Gaussian problem with n= 6 and various
values of s.

4) Consensus appears to occur “exponentially fast”
after the second stage of decision-making. Convergence
statistics of the parleying network are only weakly
dependent on the hypothesis testing problem or on
the number of sensors in the network.
5) The performance of the parleying network,

both in terms of probability of error as compared
with optimal or parallel schemes and in terms of
time-to-consensus statistics, is relatively constant over
a wide range of prior probability and sensor-expertise
(e.g., differing sensor SNRs) asymmetries. This
conclusion is drawn from simulations not shown.

It is perhaps not surprising that the parleying
network has probability of error performance similar
to that of the two-bit parallel scheme, since the former
requires on average two stages to reach a decision.
Additionally, since when the number of sensors grows
large it becomes difficult for sensors at the second
stage to do more than agree with the first-stage
network majority opinion, it is to be expected that in
this case the parleying scheme can be considered an
inefficient version of a binary parallel network. The
observation that consensus appears in most cases to
occur “exponentially quickly” is perhaps unexpected,
in that the martingale-style proof of convergence
promised no such speed. To show mathematically why
this occurs is an open problem, and is difficult due to
the inherent feedback.

III. THE nTH-ROOT NETWORK

A. Network Operation

Assuming either a Bayes cost or Neyman—Pearson
performance criterion, the optimum (centralized) test

for the binary hypothesis scenario of (1) is well known
to be

nY

i=1

¤(xi)
H1

R
H0

¸ (17)

where ¸ is an appropriately chosen threshold.
To mimic the optimum test of (17) in the parleying

network we employ, as above, a threshold test of data
of each sensor at each round of parley. The individual
tests are of the form

¤(xi)
ui,m=0

R
ui,m=0

¸i,m (18)

where the ¸i,m are thresholds yet to be determined.
Viewed globally, this means that a consensus for H0 or
H1, respectively, implies

nY

i=1

¤(xi)<
nY

i=1

¸i,m or
nY

i=1

¤(xi)>
nY

i=1

¸i,m:

(19)

In the previous section the thresholds used were
the posterior likelihood ratios; that is, the threshold
used by sensor i at time m was the ratio of the
probabilities of H0 to H1 given all the information
available to sensor i up to and including time m¡ 1
(an n¡ 1-fold posterior). In this case the productQn
i=1¸i,m is essentially the “centralized” threshold

raised to the (n¡ 1)st power, which quickly goes to
zero or infinity; hence, while convergence of the greedy
network to a consensus is quite rapid, the performance
in terms of probability of error, while an improvement
over networks without feedback, is not particularly
impressive. This lack of performance gain suggests the
approach to follow.
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Most of these iterations end in a 
consensus after 2 rounds. 
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•  If	  λ	  is	  the	  centralized	  Bayesian	  threshold,	  then	  we	  	  
have	  so	  why	  not	  have	  DM	  test	  according	  to	  
	  
	  

•  It	  is	  even	  simpler	  if	  we	  choose	  all	  the	  same:	  
•  We	  can	  show	  that	  we	  should	  use	  

	  
	  
	  
	  
where	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  is	  the	  local	  LLR	  given	  its	  past	  test	  outputs.	  

•  Convergence	  is	  assured	  here	  too.	  

Feedback:	  The	  Nth-‐Root	  Idea	  
Fig. 6. Probability that consensus occurs after given number of parleys, greedy strategy, for Gaussian problem with n= 6 and various

values of s.

4) Consensus appears to occur “exponentially fast”
after the second stage of decision-making. Convergence
statistics of the parleying network are only weakly
dependent on the hypothesis testing problem or on
the number of sensors in the network.
5) The performance of the parleying network,

both in terms of probability of error as compared
with optimal or parallel schemes and in terms of
time-to-consensus statistics, is relatively constant over
a wide range of prior probability and sensor-expertise
(e.g., differing sensor SNRs) asymmetries. This
conclusion is drawn from simulations not shown.

It is perhaps not surprising that the parleying
network has probability of error performance similar
to that of the two-bit parallel scheme, since the former
requires on average two stages to reach a decision.
Additionally, since when the number of sensors grows
large it becomes difficult for sensors at the second
stage to do more than agree with the first-stage
network majority opinion, it is to be expected that in
this case the parleying scheme can be considered an
inefficient version of a binary parallel network. The
observation that consensus appears in most cases to
occur “exponentially quickly” is perhaps unexpected,
in that the martingale-style proof of convergence
promised no such speed. To show mathematically why
this occurs is an open problem, and is difficult due to
the inherent feedback.

III. THE nTH-ROOT NETWORK

A. Network Operation

Assuming either a Bayes cost or Neyman—Pearson
performance criterion, the optimum (centralized) test

for the binary hypothesis scenario of (1) is well known
to be

nY

i=1

¤(xi)
H1

R
H0

¸ (17)

where ¸ is an appropriately chosen threshold.
To mimic the optimum test of (17) in the parleying

network we employ, as above, a threshold test of data
of each sensor at each round of parley. The individual
tests are of the form

¤(xi)
ui,m=0

R
ui,m=0

¸i,m (18)

where the ¸i,m are thresholds yet to be determined.
Viewed globally, this means that a consensus for H0 or
H1, respectively, implies

nY

i=1

¤(xi)<
nY

i=1

¸i,m or
nY

i=1

¤(xi)>
nY

i=1

¸i,m:

(19)

In the previous section the thresholds used were
the posterior likelihood ratios; that is, the threshold
used by sensor i at time m was the ratio of the
probabilities of H0 to H1 given all the information
available to sensor i up to and including time m¡ 1
(an n¡ 1-fold posterior). In this case the productQn
i=1¸i,m is essentially the “centralized” threshold

raised to the (n¡ 1)st power, which quickly goes to
zero or infinity; hence, while convergence of the greedy
network to a consensus is quite rapid, the performance
in terms of probability of error, while an improvement
over networks without feedback, is not particularly
impressive. This lack of performance gain suggests the
approach to follow.
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values of s.

4) Consensus appears to occur “exponentially fast”
after the second stage of decision-making. Convergence
statistics of the parleying network are only weakly
dependent on the hypothesis testing problem or on
the number of sensors in the network.
5) The performance of the parleying network,

both in terms of probability of error as compared
with optimal or parallel schemes and in terms of
time-to-consensus statistics, is relatively constant over
a wide range of prior probability and sensor-expertise
(e.g., differing sensor SNRs) asymmetries. This
conclusion is drawn from simulations not shown.

It is perhaps not surprising that the parleying
network has probability of error performance similar
to that of the two-bit parallel scheme, since the former
requires on average two stages to reach a decision.
Additionally, since when the number of sensors grows
large it becomes difficult for sensors at the second
stage to do more than agree with the first-stage
network majority opinion, it is to be expected that in
this case the parleying scheme can be considered an
inefficient version of a binary parallel network. The
observation that consensus appears in most cases to
occur “exponentially quickly” is perhaps unexpected,
in that the martingale-style proof of convergence
promised no such speed. To show mathematically why
this occurs is an open problem, and is difficult due to
the inherent feedback.

III. THE nTH-ROOT NETWORK

A. Network Operation

Assuming either a Bayes cost or Neyman—Pearson
performance criterion, the optimum (centralized) test

for the binary hypothesis scenario of (1) is well known
to be

nY

i=1

¤(xi)
H1

R
H0

¸ (17)

where ¸ is an appropriately chosen threshold.
To mimic the optimum test of (17) in the parleying

network we employ, as above, a threshold test of data
of each sensor at each round of parley. The individual
tests are of the form

¤(xi)
ui,m=0

R
ui,m=0

¸i,m (18)

where the ¸i,m are thresholds yet to be determined.
Viewed globally, this means that a consensus for H0 or
H1, respectively, implies

nY

i=1

¤(xi)<
nY

i=1

¸i,m or
nY

i=1

¤(xi)>
nY

i=1

¸i,m:

(19)

In the previous section the thresholds used were
the posterior likelihood ratios; that is, the threshold
used by sensor i at time m was the ratio of the
probabilities of H0 to H1 given all the information
available to sensor i up to and including time m¡ 1
(an n¡ 1-fold posterior). In this case the productQn
i=1¸i,m is essentially the “centralized” threshold

raised to the (n¡ 1)st power, which quickly goes to
zero or infinity; hence, while convergence of the greedy
network to a consensus is quite rapid, the performance
in terms of probability of error, while an improvement
over networks without feedback, is not particularly
impressive. This lack of performance gain suggests the
approach to follow.
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B. Theory

We state three results of interest.

PROPOSITION 5 If the thresholds at each round of
parley satisfy

nY

i=1

¸i,m = ¸ (20)

a consensus decision, if one is reached, matches the
centralized decision exactly.

(The proof of this is straightforward and is omitted.)
This single condition allows a variety of choices for
the thresholds. Globally trying to come to the quickest
consensus is clearly an intractable problem. As an
alternative one could maximize the probability of
consensus (or perhaps the information obtained about
the hypothesis) at each particular round by solving a
set of nonlinear equations in the n thresholds for that
round. Although such an approach does yield better
performance, in examples to date it provides only
marginal improvement over the simpler, somewhat
naive procedure suggested below.
Consider the choice of the first set (m= 1) of

thresholds for a network with independent and
identically distributed observations. Since all sensors
are equally informative (or noninformative), it seems
reasonable to equally spread the threshold constraint
of (20), i.e., to use an nth-root factorization

¸i,1 = ¸
1=n: (21)

If a consensus is not immediately reached, we consider
the effect of the broadcast information through the
posterior probabilities. Dividing both sides of the
centralized test in (17) by the likelihood ratio of
u1 (and noting the independence of the individual
elements of u1), we have

nY

i=1

�
¤(xi)

Pr(ui,1 jH0)
Pr(ui,1 jH1)

¶ H1

R
H0

¸
nY

i=1

Pr(ui,1 jH0)
Pr(ui,1 jH1)

: (22)

Since ui,1 is deterministically related to xi we have

fj,i(xi)

Pr(ui,1 jHj)
=
fj,i(xi,ui,1)

Pr(ui,1 jHj)
= fj,i(xi j ui,1) (23)

and the left hand side of (22) can be interpreted as
the optimum centralized test for the original data
conditioned on the first round of broadcasts

nY

i=1

�
¤(xi)

Pr(ui,1 jH0)
Pr(ui,1 jH1)

¶
=

nY

i=1

f1,i(xi j ui,1)
f0,i(xi j ui,1)

: (24)

Due to the independence of the xi, this conditional test
separates into a product; again taking nth-roots of the
threshold in (22) suggests the decentralized tests

¤(xi)
Pr(ui,1 jH0)
Pr(ui,1 jH1)

ui,2=1

R
ui,2=0

Ã
¸

nY

i=1

Pr(ui,1 jH0)
Pr(ui,1 jH1)

!1=n

(25)

or

¤(xi)
ui,2=1

R
ui,2=0

Ã
¸

nY

k=1

Pr(uk,1 jH0)
Pr(uk,1 jH1)

!1=n
Pr(ui,1 jH1)
Pr(ui,1 jH0)

´ ¸i,2:

(26)

Note that the thresholds ¸i,2, i= 1,2, : : :n, satisfy (20).
This same construction is used for m= 3,4, : : : .
With this formulation, the general choice of

thresholds is

¸i,m+1 =

Ã
¸

nY

k=1

Pr(sk,m · ¤(xk)· tk,m jH0)
Pr(sk,m · ¤(xk)· tk,m jH1)

!1=n

£
Pr(si,m · ¤(xi)· ti,m jH1)
Pr(si,m · ¤(xi)· ti,m jH0)

: (27)

We can rewrite the local tests using the thresholds
specified in (27) as

¤m(xi)
ui,m=1

R
ui,m=0

(¸¤m)
1=n (28)

where ¤m(¢) is as specified in (11) and

¸¤m = ¸
nY

k=1

Pr(sk,m · ¤(xk)· tk,m jH0)
Pr(sk,m · ¤(xk)· tk,m jH1)

= ¸
Pr(Um jH0)
Pr(Um jH1)

(29)

is a common threshold (similar to (8) and (9)).
By analogy with the greedy network, we have the

following.

PROPOSITION 6 Given that um is not all zero or all one
and that the thresholds are as in (27), then we have that
Pr(um+1 = um)< 1.

PROPOSITION 7 A consensus to the optimal centralized
decision is reached with probability one.

The proofs of these are similar to those given in
the previous section and are not repeated here. Note
that Proposition 4 does not carry over to the nth-root
network (as the number of sensors increases there is
no increase in speed to consensus). Note also that the
nth-root formulation admits a Neyman-Pearson style
thresholding rule; this is not possible in the greedy
scheme.
The operation of the nth root network is

exemplified in Table II. The situation is the same as
that of Table I, except that here there are six decision
makers rather than four. Observe that initially only two
of the six decision makers “believe” that H1 is true,
nevertheless these two are sufficiently “sure” (large
local likelihood ratios) that they are able to “convince”
the remainder of the network after five rounds of
communication. The operation of the nth-root network
is similar to that of the greedy network, but its lack
of haste is manifested by the correspondingly smaller
changes in the thresholds from round to round.
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We state three results of interest.

PROPOSITION 5 If the thresholds at each round of
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This single condition allows a variety of choices for
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consensus (or perhaps the information obtained about
the hypothesis) at each particular round by solving a
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that Proposition 4 does not carry over to the nth-root
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!1=n

£
Pr(si,m · ¤(xi)· ti,m jH1)
Pr(si,m · ¤(xi)· ti,m jH0)

: (27)

We can rewrite the local tests using the thresholds
specified in (27) as

¤m(xi)
ui,m=1

R
ui,m=0

(¸¤m)
1=n (28)

where ¤m(¢) is as specified in (11) and

¸¤m = ¸
nY

k=1

Pr(sk,m · ¤(xk)· tk,m jH0)
Pr(sk,m · ¤(xk)· tk,m jH1)

= ¸
Pr(Um jH0)
Pr(Um jH1)

(29)

is a common threshold (similar to (8) and (9)).
By analogy with the greedy network, we have the

following.

PROPOSITION 6 Given that um is not all zero or all one
and that the thresholds are as in (27), then we have that
Pr(um+1 = um)< 1.

PROPOSITION 7 A consensus to the optimal centralized
decision is reached with probability one.

The proofs of these are similar to those given in
the previous section and are not repeated here. Note
that Proposition 4 does not carry over to the nth-root
network (as the number of sensors increases there is
no increase in speed to consensus). Note also that the
nth-root formulation admits a Neyman-Pearson style
thresholding rule; this is not possible in the greedy
scheme.
The operation of the nth root network is

exemplified in Table II. The situation is the same as
that of Table I, except that here there are six decision
makers rather than four. Observe that initially only two
of the six decision makers “believe” that H1 is true,
nevertheless these two are sufficiently “sure” (large
local likelihood ratios) that they are able to “convince”
the remainder of the network after five rounds of
communication. The operation of the nth-root network
is similar to that of the greedy network, but its lack
of haste is manifested by the correspondingly smaller
changes in the thresholds from round to round.
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where 

B. Theory

We state three results of interest.

PROPOSITION 5 If the thresholds at each round of
parley satisfy

nY

i=1

¸i,m = ¸ (20)

a consensus decision, if one is reached, matches the
centralized decision exactly.

(The proof of this is straightforward and is omitted.)
This single condition allows a variety of choices for
the thresholds. Globally trying to come to the quickest
consensus is clearly an intractable problem. As an
alternative one could maximize the probability of
consensus (or perhaps the information obtained about
the hypothesis) at each particular round by solving a
set of nonlinear equations in the n thresholds for that
round. Although such an approach does yield better
performance, in examples to date it provides only
marginal improvement over the simpler, somewhat
naive procedure suggested below.
Consider the choice of the first set (m= 1) of

thresholds for a network with independent and
identically distributed observations. Since all sensors
are equally informative (or noninformative), it seems
reasonable to equally spread the threshold constraint
of (20), i.e., to use an nth-root factorization

¸i,1 = ¸
1=n: (21)

If a consensus is not immediately reached, we consider
the effect of the broadcast information through the
posterior probabilities. Dividing both sides of the
centralized test in (17) by the likelihood ratio of
u1 (and noting the independence of the individual
elements of u1), we have

nY

i=1

�
¤(xi)

Pr(ui,1 jH0)
Pr(ui,1 jH1)

¶ H1

R
H0

¸
nY

i=1

Pr(ui,1 jH0)
Pr(ui,1 jH1)

: (22)

Since ui,1 is deterministically related to xi we have

fj,i(xi)

Pr(ui,1 jHj)
=
fj,i(xi,ui,1)

Pr(ui,1 jHj)
= fj,i(xi j ui,1) (23)

and the left hand side of (22) can be interpreted as
the optimum centralized test for the original data
conditioned on the first round of broadcasts

nY

i=1

�
¤(xi)

Pr(ui,1 jH0)
Pr(ui,1 jH1)

¶
=

nY

i=1

f1,i(xi j ui,1)
f0,i(xi j ui,1)

: (24)

Due to the independence of the xi, this conditional test
separates into a product; again taking nth-roots of the
threshold in (22) suggests the decentralized tests

¤(xi)
Pr(ui,1 jH0)
Pr(ui,1 jH1)

ui,2=1

R
ui,2=0

Ã
¸

nY

i=1

Pr(ui,1 jH0)
Pr(ui,1 jH1)

!1=n

(25)

or

¤(xi)
ui,2=1

R
ui,2=0

Ã
¸

nY

k=1

Pr(uk,1 jH0)
Pr(uk,1 jH1)

!1=n
Pr(ui,1 jH1)
Pr(ui,1 jH0)

´ ¸i,2:

(26)

Note that the thresholds ¸i,2, i= 1,2, : : :n, satisfy (20).
This same construction is used for m= 3,4, : : : .
With this formulation, the general choice of

thresholds is

¸i,m+1 =

Ã
¸

nY

k=1

Pr(sk,m · ¤(xk)· tk,m jH0)
Pr(sk,m · ¤(xk)· tk,m jH1)

!1=n

£
Pr(si,m · ¤(xi)· ti,m jH1)
Pr(si,m · ¤(xi)· ti,m jH0)

: (27)

We can rewrite the local tests using the thresholds
specified in (27) as

¤m(xi)
ui,m=1

R
ui,m=0

(¸¤m)
1=n (28)

where ¤m(¢) is as specified in (11) and

¸¤m = ¸
nY

k=1

Pr(sk,m · ¤(xk)· tk,m jH0)
Pr(sk,m · ¤(xk)· tk,m jH1)

= ¸
Pr(Um jH0)
Pr(Um jH1)

(29)

is a common threshold (similar to (8) and (9)).
By analogy with the greedy network, we have the

following.

PROPOSITION 6 Given that um is not all zero or all one
and that the thresholds are as in (27), then we have that
Pr(um+1 = um)< 1.

PROPOSITION 7 A consensus to the optimal centralized
decision is reached with probability one.

The proofs of these are similar to those given in
the previous section and are not repeated here. Note
that Proposition 4 does not carry over to the nth-root
network (as the number of sensors increases there is
no increase in speed to consensus). Note also that the
nth-root formulation admits a Neyman-Pearson style
thresholding rule; this is not possible in the greedy
scheme.
The operation of the nth root network is

exemplified in Table II. The situation is the same as
that of Table I, except that here there are six decision
makers rather than four. Observe that initially only two
of the six decision makers “believe” that H1 is true,
nevertheless these two are sufficiently “sure” (large
local likelihood ratios) that they are able to “convince”
the remainder of the network after five rounds of
communication. The operation of the nth-root network
is similar to that of the greedy network, but its lack
of haste is manifested by the correspondingly smaller
changes in the thresholds from round to round.
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Unlike Neyman-Pearson hypothesis testing where
randomization must be considered, under a Bayesian
criterion the decision when the likelihood ratio is equal
to the threshold may be chosen arbitrarily. Specifying
in this case that ui,m = 1 prevents a lock-up without
consensus.
This rule may be written in a number of equivalent

ways. With

¸i,m ´
¼0Pr(Ui,m jH0)
¼1Pr(Ui,m jH1)

(5)

defined as the threshold used by sensor i at stage m,
we can express

¸i,m =
¼0
¼1

Y

k 6=i

Pr(sk,m · ¤(xk)< tk,m jH0)
Pr(sk,m · ¤(xk)< tk,m jH1)

(6)

and say that the mth decision of sensor i is governed
by

¤(xi)
ui,m=1

R
ui,m=0

¸i,m: (7)

Here sk,m and tk,m are defined, respectively, as the
minimum and maximum values of ¤(xk) given
fuk,ngm¡1n=1 ; for concreteness sk,1 = 0 and tk,1 =1.
Simulation is most amenable to this form of the
test, and as such we refer to it as the practical
representation.
Additionally, we may define

¸m =
¼0
¼1

Y

k

Pr(sk,m · ¤(xk)< tk,m jH0)
Pr(sk,m · ¤(xk)< tk,m jH1)

(8)

or with Um ´
S
n<m

S
i ui,n

¸m =
¼0Pr(Um jH0)
¼1Pr(Um jH1)

(9)

to be the posterior likelihood ratio observed for the
entire network at stage m. In this case, the decision
rule for ui,m may be written as

¤(xi)
ui,m=1

R
ui,m=0

¸m (10)

where

¤m(xi) =
f1,i(xi)

f0,i(xi)

Pr(si,m · ¤(xi)· ti,m jH0)
Pr(si,m · ¤(xi)· ti,m jH1)

:

(11)

That is, the rule at each stage is a conditional
likelihood ratio test, where the conditioning at sensor i
is over the range where the remainder of the network
knows ¤(xi) is to be, and where the threshold ¸m
is common to all sensors. This form of the test is
probably most intuitive, and we call it the analytic
representation. Note that the implication of this form
of the test is that the network can be considered to
be “restarting” itself at each stage; the new likelihood
ratios are the conditional versions of the original
ones, and the threshold is no longer a ratio of the

TABLE I

Example of Decision-Making Process Using Greedy Approach

Note: In this case there are n= 4 sensors and the problem of

interest is tht of a shift-in-mean in Gaussian noise. Exhibited here

are the original data (in likelihood ratio form), the decisions at

each stage, and the thresholds used in arriving at those decisions.

original priors but rather a ratio of the posterior
probabilities of the hypotheses. In this formulation

the decisions at each stage are independent of one

another; the aggregate of intervals f(si,m, ti,m)gni=1
could be considered as a (nonhomogeneous) Markov

process.

For concreteness, let us consider the example

of the operation of a network shown in Table I. In

this case there are n= 4 sensors, and the problem
of interest is the Gaussian shift-in-mean of (16) with

s= 0:1. In the table we observe the data (actually the
local likelihood ratio ¤(xi) = e

0:2xi), the thresholds used

at each round of decision-making, and the decision

reached. Note that since we are using the practical

formulation, the data to be compared with the current

threshold does not change from round to round. After

the initial comparisons, two sensors report that they

believe H1 to be true, and two H0. In the second
round, the sensors essentially clarify how certain they

were as to their original decisions, as manifested by

those which reported H0 retesting against a lowered
threshold, and those which reported H1 retesting
against a raised one. It turns out that three of the four

sensors are “not very sure”; sensor 1, however, does

not change its declaration, and its “opinion” sways the

rest.

B. Theory

The following propositions give some idea of the

operation of the greedy network.

PROPOSITION 1 Given that um ´ [u1,m,u2,m, : : : ,un,m],
the decision vector after the mth parley, is not all zero or
all one, then we have that Pr(um+1 = um)< 1.

PROOF Any likelihood ratio ¤ must have its support
“centered” around unity, in the sense that probability

mass below unity implies probability mass above unity

and vice versa

Pr(¤< 1 jHk)> 0, Pr(¤> 1 jHk)> 0 (12)
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Nth-‐Root	  Example	  

1

Help!
Me!

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6

⇤(xi) .99 .95 1.21 .86 .92 1.26

�i,1 1.00 1.00 1.00 1.00 1.00 1.00

ui,1 0 0 1 0 0 1

�i,2 0.90 0.90 1.24 0.90 0.90 1.24

ui,2 1 1 0 0 1 1

�i,3 0.95 0.95 1.10 0.79 0.95 1.37

ui,3 1 1 1 1 0 0

�i,4 0.96 0.96 1.14 0.83 0.91 1.27

ui,4 1 0 1 1 1 0

�i,5 0.96 0.93 0.84 1.15 1.08 0.80

ui,5 1 1 1 1 1 1

August 24, 2016 DRAFT

product is 1.13 
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•  Since	  the	  decision	  is	  
op6mal,	  there	  is	  no	  
need	  to	  check	  
performance,	  just	  
how	  long	  it	  takes.	  

•  Here	  we	  plot	  that	  
for	  a	  small-‐signal	  
Gaussian	  problem	  
versus	  number	  of	  
DMs.	  	  

Nth-‐Root	  Results	  

TABLE II

Example of Decision-Making Process Under nth-Root Approach

Note: In this case there are n= 6 sensors and the problem of interest is that of a shift-in-mean in Gaussian noise. Exhibited here are

the original data (in likelihood ratio form), the decisions at each stage, and the thresholds used in arriving at those decisions.

Fig. 7. Probability that consensus occurs after given number of

parleys, nth-root strategy, for Gaussian problem with s= 0:2 and

various values of n.

C. Simulation Results

As noted in Proposition 5, the consensus decision
with nth-root thresholds matches that of the centralized
detector; hence, the performance measure of interest
is the delay until consensus. To examine this delay,
consider the Gaussian shift-in-mean problem of (16).
For the minimum probability of error criterion with

equal prior probabilities, the centralized threshold
is ¸= 1. Fig. 7 shows histograms of the number of
parleys until consensus. The number of sensors, n,
is in the range 2 through 100. The simulations (105

trials each) assume a signal-to-noise ratio of ¡14 dB
(s= 0:2). Notice the common shape of the curves
(shifting to the right) for n > 5.
Upon examination of the actual thresholds and

transmitted bits in the examples above, one notes that
not all of the sensors’ “rethinking” yields informative

Fig. 8. Average number of parleys for Fig. 7 examples versus

number of sensors: actual average and average of those

“informative.”

data. Specifically, the threshold for sensor i from
(27) could and does occasionally fall outside of
(si,m, ti,m), the interval of interest. Since the limits of
this interval are known to the entire network, the
transmitted “decision” bit is redundant and need not
be transmitted. A relevant question then is: By how
much can the data rate be reduced by not transmitting
redundant data? For the Gaussian problem above,
Fig. 8 shows the average number of informative parleys
per sensor before consensus versus number of sensors
n. For comparison, the actual average number of
parleys from Fig. 7 is also plotted. As the number of
sensors grows, both the delay until consensus and the
proportion of redundant parleys increase.
To observe the effect of SNR on parleying, Fig. 9

repeats the example above with n= 7 for several
choices of signal amplitude. We notice similar shapes

454 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 31, NO. 1 JANUARY 1995



Slide	  41	  NATO STO IST-155, Willett 

•  Suppose	  the	  scheme	  is	  augmented	  to	  the	  following	  
logical	  (but	  subop6mal)	  scheme:	  
	  
	  
	  

•  The	  request	  for	  further	  informa6on	  is	  that	  all	  silent	  
sensors	  transmit.	  

•  We	  use	  the	  “parley”	  system,	  where	  t2	  is	  
the	  threshold	  below	  which	  a	  sensor	  is	  silent.	  

	  

Censoring	  With	  Feedback	  
Fig. 9. Upper and lower thresholds for Gaussian case (average

communication rate = 10%, ¾2 = 1 in all cases) for J-divergence

and Bhattacharyya distance measures.

Fig. 10. Upper and lower thresholds for Gaussian case (SNR= 1,

¾2 = 1 in all cases) for J-divergence and Bhattacharyya distance

measures.

and Bhattacharyya, for which we have the monotonic
increasing function f(¢) and convex function C(¢)
given, respectively, by

fJ (x) = x CJ (x) = (x¡ 1)log(x)

fB(x) =¡ log(1¡ x=2) CB(x) = (
p
x¡ 1)2:

The problem here is the Gaussian one. All
observations are assumed to be independent when
conditioned on the hypothesis. In Fig. 9 we show the
thresholds as a function of the SNR for a constant
average communication under H per sensor of 10%.
We see that the no-send region moves downward
as the SNR increases; this behavior reflects the fact
that with increasing SNR a value of the LLR that was
“uninformative” but near the upper threshold becomes
informative.
In Fig. 10 we show the thresholds as a function

of the average communication per sensor, for a fixed
SNR.

V. CENSORING SCHEME WITH FEEDBACK

In some situations an immediate decision is
necessary; in others a certain amount of delay is
tolerable if it brings greater accuracy. This idea
was explored in [1]. There sensor-to-fusion-center
communication was binary and consisted of two
“rounds”, between which the tentative decision of the
FC was made available to all sensors. For the second
round, the local thresholds of the sensors were raised
or lowered accordingly and further information was
extracted from the data. The idea was extended in
[14] to the case that the “bantering” continued until
a consensus was reached.
In the censoring scheme the “further information”

does not take the form of a refined likelihood ratio
quantization, but rather of all the information which
was not previously sent. The problem, including all
the ramifications of apportionment of communication
between the first and second round of decision-making,
is highly complex. Here we explore a simple and
suboptimal, but effective, scheme for the first round
of decision-making:

8
>>>>>>><

>>>>>>>:

decide for H LFC · ¿FC, no sensor
has transmitted

request further at least one sensor has
information not transmitted

decide for K LFC > ¿FC, all sensors
have transmitted

(15)

where LFC is the first-round likelihood-ratio at the FC.
Note that unlike [1], a second round of communication
is not always necessary. A decision may be declared
after the first round if all sensors have or have not
transmitted, but must be completed after the second
round; in either case it is based on the comparison
of the likelihood ratio at the fusion center (LFC) to a
threshold (¿FC).
There are two possible advantages to the use of

feedback: to reduce average communication, and to
reduce the probability of error. These may, naturally,
be traded off one for the other as is seen fit, but here
we opt solely for the latter. Specifically, we impose
the condition that the censored/feedback scheme
have the same probability of error as the unquantized
or centralized network. To do this we specify, with
t2i representing a threshold below which sensor i
transmits nothing, that

NY

i=1

t2i = ¿FC: (16)

For two sensors the decision regions are as in Fig. 11.
Notice that if nothing is transmitted to the FC,

then the product of the LLRs must have been less

560 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 32, NO. 2 APRIL 1996



Slide	  42	  NATO STO IST-155, Willett 

Distributed	  Detec6on	  Structures	  

DM1	  

DM2	  

DM3	  

DMn	  

x1 

x2 

x3 

xn 

FC	  

u1 

u2 

u3 

un 

u0 

parallel 

DM1	  

DM2	  

DMn	  

x1 

x2 

xn 

u1 

u2 

un-1 

u0 

serial 
or 

tandem 
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DM1	   DM2	   DM3	   DM4	   DM5	  

DM6	   DM7	  

DM8	  

x1 x2 x3 x4 x5 

x6 x7 

x8 

u1 u2 u3 u4 u5 

u7 

u0 

u6 

More	  General	  Structures	  

Little is known about 
the best such 
structure – or even 
what “best” might 
mean. 
 
A human decision-
making concept is of 
“congruence” 
between task and 
structure. 
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Tandem	  Structure	  

2 3 4 5 6 7 8 9 
DM index 

threshold 

ui=1 

ui=0 

ui=ui-1 

There is an optimal 
Bayesian solution: 

1

Help!
Me!

�i = log

✓
1� Pe(i� 1)

Pe(i� 1)

◆

lim

n!1

1

1 + U

August 25, 2016 DRAFT

(symmetry) and 
provided the LLR is 
tightly bounded to ±U 

1

Help!
Me!

�i = log

✓
1� Pe(i� 1)

Pe(i� 1)

◆

lim

n!1
Pe(n) =

1

1 + U

August 25, 2016 DRAFT

Interestingly, in the 
Gaussian case Pe(n) does 
not go to zero unless 

1

Help!
Me!

�i = log

✓
1� Pe(i� 1)

Pe(i� 1)

◆

lim

n!1
Pe(n) =

1

1 + U

�i /
p

log(i)

August 25, 2016 DRAFT

-  Cover, “Hypothesis Testing with Finite Statistics” Ann Math Stat 1969. 
-  Swaszek, “On the Performance of Serial Networks in Distributed Detection,” TAES 1993. 

1 
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•  Consider	  the	  problem	  that	  the	  FC	  (parallel	  topology)	  
needs	  to	  make	  a	  decision	  based	  on	  DMs	  of	  unknown	  
quality.	  

•  That	  is,	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  but	  Pd(i)	  and	  Pfa(i)	  
are	  unknown.	  	  

•  Now	  suppose	  that	  the	  FC	  has	  access	  to	  previous	  
decisions	  …	  but	  does	  not	  know	  ground	  truth	  in	  any	  of	  
them.	  

•  Assume	  DMs	  are	  condi6onally	  independent.	  

Decision	  Networks	  That	  Learn	  

1

Help!
Me!

L(u) =
nY

i=1

[1� Pd(i)]1�uiPd(i)ui

[1� Pfa(i)]1�uiPfa(i)ui

August 25, 2016 DRAFT

- Wang, Kaplan, Abdelhazer & Aggarwal, “On Credibility Estimation Tradeoffs in Assured Social Sensing,” JSTSP 2013. 
- Marano, Matta & Willett, “The Importance of Being Earnest: Social Sensing With Unknown Agent Quality,” TSP 2016. 



Slide	  46	  NATO STO IST-155, Willett 

•  DM 1 has high Pd and high Pfa 
•  DM 2 has high Pd and low Pfa 
•  DM 3 has low Pd and high Pfa 
•  DM 4 has Pd and Pfa near 50% 
•  DM 5 has high Pd and low Pfa 
•  DM 6 has low Pd and low Pfa 

How do we find this out? 

1

Help!
Me!

�(x) =

nX

i=1

log

✓
q1i(1� q0i)

(1� q1i)q0i

◆
xi =

nX

i=1

wixi

i Truth DM 1 DM 2 DM 3 DM 4 DM 5 DM 6

1 H0 1 0 1 0 0 0

2 H0 1 0 1 1 0 0

3 H1 1 1 0 0 1 1

4 H0 1 0 1 1 0 0

5 H1 1 1 0 0 1 0

6 H1 0 1 0 1 0 0

7 H1 1 1 0 0 1 0

8 H0 1 0 1 1 0 0

9 H1 1 1 0 0 1 0

10 H0 1 0 0 0 0 0

September 26, 2016 DRAFT
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•  The	  EM	  approach	  is	  a	  “meta-‐algorithm”	  appropriate	  
when	  there	  is	  hidden	  data	  that	  is	  not	  desired.	  
–  Here	  the	  hidden	  data	  is	  the	  truth	  (hypotheses)	  at	  all	  6mes.	  

•  Ini6alize	  the	  Pd‘s	  and	  Pfa‘s	  –	  say	  80%	  &	  10%.	  

EM	  Approach	   1

Help!
Me!

wj(t) = Pr(Hj true at frame t|{Ui(t)}ni=1)

=
Pr(Hj)

Qn
i=1

�
[1� Pd(i)]1�ui(t)Pd(i)ui(t)

�

Pr(H0)
Qn

i=1

�
[1� Pfa(i)]1�ui(t)Pfa(i)ui(t)

�
+ Pr(H1)

Qn
i=1

�
[1� Pd(i)]1�ui(t)Pd(i)ui(t)

�

Pd(i)  
Pn

t=1 w1(t)ui(t)Pn
t=1 w1(t)

Pfa(i)  
Pn

t=1 w0(t)ui(t)Pn
t=1 w0(t)

August 26, 2016 DRAFT

iterate back and forth 

1

Help!
Me!

wj(t) = Pr(Hj true at frame t|{Ui(t)}ni=1)

=
Pr(Hj)

Qn
i=1

�
[1� Pd(i)]1�ui(t)Pd(i)ui(t)

�

Pr(H0)
Qn

i=1

�
[1� Pfa(i)]1�ui(t)Pfa(i)ui(t)

�
+ Pr(H1)

Qn
i=1

�
[1� Pd(i)]1�ui(t)Pd(i)ui(t)

�

Pd(i)  
Pn

t=1 w1(t)ui(t)Pn
t=1 w1(t)

Pfa(i)  
Pn

t=1 w0(t)ui(t)Pn
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How	  Well	  Does	  It	  Work?	  
Ground truth No. of tasks = 30

No. of tasks = 300 No. of tasks = 3000

•  Network of 1000 DMs. 
•  Hot (red) circles denote a 

high error probability, while 
cold (blue) circles denote 
low error probabilities. 

•  Red dashed circle 
surrounds low-quality DMs.  

•  We see how the learning 
ability of our algorithm 
progressively increases, so 
we “unmask” the unreliable 
DMs. 
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•  A	  Byzan6ne	  sensor	  is	  one	  that	  messes	  with	  the	  FC	  
–  it’s	  temp6ng	  (e.g.)	  for	  a	  Byzan6ne	  sensor	  that	  “knows”	  H0	  is	  
true	  to	  send	  message	  that	  says	  it	  knows	  H1	  is	  true	  

–  but	  this	  is	  too	  obvious,	  the	  FC	  can	  disregard	  such	  messages	  
–  So	  must	  try	  to	  send	  a	  disguised	  message	  

•  Assume	  a	  frac6on	  α	  of	  the	  sensors	  are	  Byzan6ne	  
–  report	  on	  asympto6c	  results	  
–  assume	  (here)	  that	  the	  Byzan6nes	  collude	  and	  know	  H	  
–  non-‐Byzan6ne	  sensors	  have	  probabili6es	  of	  sending	  message	  
u=k:	  q0(k)	  and	  q1(k)	  respec6vely	  under	  H0	  and	  H1	  

–  Byzan6ne	  sensors	  have	  corresponding	  probabili6es	  
of	  sending	  message	  u=k:	  θ0(k)	  and	  θ1(k)	  

Byzan6ne	  Sensors	  

- Matta, Marano & Tong, “Distributed Detection in the Presence of Byzantine Attacks,” TSP 2009. 
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•  Cri6cal	  “blinding”	  frac6on	  of	  Byzan6ne	  sensors	  
	  
	  
	  
–  if	  α>αb	  then	  the	  FC	  is	  completely	  blind	  

•  Otherwise	  with	  α <	  αb	  
	  
	  
	  
	  
	  
	  
	  
	  
	  

•  Other	  considera6ons	  
–  Byzan6ne	  sensors	  do	  not	  know	  the	  true	  hypothesis	  
–  mul6ple	  observa6ons	  from	  each	  sensor	  
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Distributed	  Detec6on	  with	  Secrecy	  

Security against Eavesdropper Energy Consumption 

Physical Layer (Detection) Security Censoring Sensors 

take care of  

by means of 

Since detection is possible for an eavesdropper as well as FC, 
Then network protection is necessary 
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General setup 

Our setup: the 
eavesdropper 

only knows that 
something was 

sent 

- Marano, Matta & Willett, “Distributed Detection with Censoring Sensors under Physical Layer Secrecy,” TSP 2013. 
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divergence @ fusion center (from i-th sensor) 

overall (additive) divergence 

overall divergence @ eavesdropper 

some convex U function, 
e.g., the two KL numbers 
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Perfect Secrecy 
Limit to PERFECT SECRECY General formulation: 

yielding: 

or, equivalently, we must compute 

divergence-cost 
function 
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•  The divergence loss due to the secrecy requirement is modest. 
•  With low comms (β→0), the FC and the eavesdropper see the same picture. 
•  Looking at the transmission activities, rather than the content, is nearly optimum. 
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•  Encryp6on	  
–  eavesdropper	  cannot	  decode	  

•  Informa6on	  theore6c	  analyses	  
–  bandwidth	  /	  informa6on	  /	  secrecy	  trade-‐offs	  

•  Homomorphic	  techniques	  
–  make	  a	  coopera6ve	  colleague	  do	  work	  for	  you	  while	  hiding	  
your	  data	  from	  her	  

More	  Secrecy	  
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Sequen6al	  Tes6ng	  
•  suppose	  simple	  binary	  hypothesis	  test	  

–  H0	  versus	  H1	  
–  Tn=log(f1(xn)/f0(xn))	  is	  LLR	  
–  stopping	  rule	  and	  decision	  controlled	  by	  upper	  and	  
lower	  thresholds	  

LLR 

b 

a 

decide for H1, at time N 
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Sequen6al	  Tes6ng	  

fixed sample size (FSS) test 

more general test 
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•  define	  Qn={xn:	  decide	  for	  H1	  at	  6me	  N=n}	  
•  define	  Rn={xn:	  decide	  for	  H0	  at	  6me	  N=n}	  

•  Wald’s	  approxima6ons	  for	  (LR,	  not	  LLR)	  thresholds	  A	  &	  B:	  
–  eb=B=β/α and	  ea=Α=(1-β)/(1-α)	


•  easier	  than	  fixed	  sample-‐size	  (FSS)	  tes6ng	  
•  Wald’s	  iden6ty	  can	  find	  average	  sample	  numbers	  (ASNs)	  for	  iid	  case	  

–  E(N|Hj)=E(TN|Hj)/µj	  where	  µj	  is	  mean	  of	  update	  
–  also	  easy	  to	  figure	  out	  
–  Mar6ngale	  proof,	  or	  using	  moment	  genera6ng	  func6on	  
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Sequen6al	  Tes6ng:	  Analysis	  
•  Wald-‐Wolfowitz	  Theorem:	  

–  any	  test	  with	  be,er	  than	  a	  given	  α	  and	  β	  performance	  must	  have	  E(N|Hj)	  
performance	  no	  be,er	  than	  the	  corresponding	  SPRT	  

–  no	  point	  in	  trying	  to	  play	  games	  with	  decision	  regions	  or	  boundaries	  
•  op6mality	  is	  slippery	  

–  FSS	  test	  
•  has	  best	  error	  performance	  &	  bounded	  N	  
•  but	  worse	  ASN	  than	  SPRT	  

–  truncated	  SPRT	  (Tantaratana	  &	  Poor)	  
•  essen6ally	  same	  ASN	  as	  SPRT	  
•  be,er	  ASN	  than	  FSS	  test	  

•  mul6ple	  hypotheses:	  
–  a	  lot	  is	  s6ll	  open	  
–  Veeravalli,	  Tartakovsky	  
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•  Could	  simply	  have	  sequen6al	  test	  based	  on	  DM-‐level	  
observa6ons,	  but	  that	  is	  not	  so	  interes6ng.	  

•  So	  consider	  a	  sequen6al	  tes6ng	  paradigm	  in	  the	  
SENMA	  architecture	  
–  sensor	  networks	  with	  mobile	  agents,	  a.k.a.	  rover,	  a.k.a.	  FC	  
–  in	  computer	  science	  this	  is	  a	  “data	  mule”	  

Distributed	  Sequen6al	  Detec6on	  

- Marano, Matta, Willett & Tong, “Cross-Layer Design of Sequential Detectors in Sensor Networks,” TSP 2006. 
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•  Poisson	  field	  of	  
sensors	  

•  sensors	  do	  not	  
know	  their	  
neighborhood	  

•  FC	  hears	  DMs	  via	  
ALOHA	  
–  need	  exactly	  one	  
transmission	  for	  
success	  

–  pure	  ALOHA	  
efficiency	  is	  upper	  
bounded	  by	  18%	  	  
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•  SENMA	  works	  best	  
with	  “censored”	  
observa6ons	  	  

•  op6miza6on	  shows	  
Pr(no	  transmit)=0	  
–  all	  “don’t	  transmit”	  
decisions	  should	  be	  
based	  on	  local	  
threshold	  

•  λ	  =	  Poisson	  density	  
of	  sensors	  

•  A	  is	  area	  per	  unit	  
6me	  that	  rover	  sees	  
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•  Now	  suppose	  both	  FC	  and	  DMs	  use	  sequen6al	  tests	  
–  SPRT	  is	  a	  kind	  of	  “censoring”	  
–  results	  here	  for	  Gaussian	  shiX-‐in-‐mean	  

•  Pe(FC)	  <<	  Pe(DM)	  
–  the	  DM	  tests	  are	  much	  less	  reliable	  than	  the	  FC	  decision	  

•  E(TFC)	  ≈	  E(TDM)	  
–  the	  DMs	  do	  not	  work	  (much)	  beyond	  the	  final	  decision	  

•  E(TFC)	  ≈	  E(Tsingle	  sensor)	  ×	  (SNR/λ)1/2	  
–  an	  equivalent	  single	  sensor	  test	  would	  take	  far	  longer	  

•  E(N)	  ≈	  0.3	  ×	  λ	  ×	  E(T)	  
–  number	  of	  FC	  reports	  received	  is	  about	  a	  third	  of	  the	  
nodes	  encountered,	  regardless	  of	  Pe	  or	  SNR	  
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Quickest	  Detec6on	  
•  nature	  changes	  from	  H0	  to	  H1	  

–  want	  quickest	  alert	  of	  this	  change	  
–  assume	  independent	  data	  

•  intui6on:	  
–  form	  cumula6ve	  LLR	  
–  if	  it	  jumps	  enough,	  declare	  a	  change	  

overall min 

sufficient change 

cumulative 
LLR 
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•  same	  as	  CUSUM	  (cumula6ve	  sum)	  
–  Tn	  =	  max{0,Tn-‐1+g(xn)}	  	  
–  iterated	  SPRT	  
–  unit	  Gaussian	  shiX-‐in-‐mean:	  

•  Tn=max{0,Tn-‐1+(xn-‐µ/2)}	  

h 

change 

“bias” ensures H0 drift downwards 

Page test 
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•  unit	  Gaussian	  with	  mean	  +/-‐	  0.2	  
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•  asympto6cally	  (as	  h	  gets	  large)	  have	  T=eηD	  
–  η	  is	  “Page’s	  efficiency”	  
–  suppose	  T	  is	  1,000	  and	  D	  is	  10	  
–  then	  can	  have	  T=1,000,000	  with	  D=20	  

•  otherwise,	  for	  performance:	  
–  Siegmund’s	  correc6on	  terms	  
–  Brownian	  mo6on	  or	  discrete	  random	  walk	  results	  
–  “C-‐matrix”	  or	  iterated	  FFT	  

•  op6mality:	  
–  Page	  procedure	  is	  “quickest”	  for	  iid	  case	  

•  Lorden,	  Moustakides	  
–  for	  non-‐iid	  case	  it	  is	  known	  to	  be	  quickest	  for	  only	  very	  
special	  cases	  where	  updates	  are	  condi6onally	  iid	  

•  some	  Markov	  chains	  (Moustakides)	  
•  some	  special	  HMMs	  (Fuh)	  

–  in	  some	  dependent	  cases	  Page	  is	  very	  subop6mal	  
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Summary	  
	  •  Detec6on	  basics	  

–  Neyman-‐Pearson,	  Bayesian,	  ROCs,	  useful	  alterna6ve	  metrics	  
•  Distributed	  detec6on	  and	  decision	  fusion	  

–  How	  to	  quan6ze	  and	  how	  to	  fuse	  
•  Some	  fun	  pathologies	  

–  Iden6cal	  sensors	  can	  be	  different	  
–  Dependence:	  li,le	  is	  known	  except	  it’s	  strange	  

•  New	  structures	  
–  Censoring	  sensors:	  reduced	  communica6on	  
–  Feedback	  of	  decisions:	  “How	  sure	  are	  you?”	  
–  Sequen6al	  networks:	  tricky	  to	  avoid	  lock-‐up	  
–  Learning	  decision-‐makers’	  biases:	  rich	  area	  with	  human	  decision-‐making	  

applica6ons	  and	  many	  extensions	  
–  Using	  censoring	  to	  hide	  data	  –	  secrecy	  
–  How	  Byzan6ne	  sensors	  should	  work	  
–  Sequen6al	  decentralized	  detec6on	  schemes	  	  
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Ques6ons?	  


