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Outline

e Detection basics
e Distributed detection and decision fusion

 Some fun pathologies
— ldentical sensors can be different
— Dependence

* New structures
— Censoring sensors
— Feedback of decisions
— Sequential networks
— Learning decision-makers’ biases

e Other topics
— Byzantine sensors
— Secrecy and malicious sensors
— Sequential and quickest tests
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Detection and Decision-Making

HO . Xz ~ POz'
H1 . Xz ~ Plz'

* Problem is to choose between

e Optimal decision uses likelihood ratio (LRT) to
compute probability of deciding H;:

(1 i L(x) > i .
¢(x) = § ~ if L(x)=7 < L(x H = Zlog (ilgz;)
| 0 if L(x)<T i=1 i=1 02

* For example in Gaussian shift-in-mean case:

n 1 _ e_(xi_“)2/202 " 1 n
() ] e 10— S
1= =1
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Optimality?

* Neyman-Pearson
— Maximize P, = Pr(decide H,|H, true) for given specified
level of P, = Pr(decide H,|H, true)
— LRT is optimal, threshold T determined by P,
* Bayes
— Assume “costs” ¢; = Cost of deciding H; when H; is true
— Assume prior probabilities Pr(H.)
— LRT is optimal, threshold

P’I“(H())[Cl() — COO] PT(HO)

T Pr(Hi)[co1 — c11] and it P(e) minimized: -7 = Pr(H;)

NATO STO IST-155, Willett Slide 4



- t

COLLABORATION SUPPORT OFFICE

Performance

* In some cases you can compute the performance
— T(x) is Gaussian:

T — Mo
. 0o

Pt = Pr(T(x)>71|Hy) = Q

Py = Pr(T(x)>7|Hy) = Q iy

[o—oQ—1<Pfa> g -wo)]

01

- Q

— The Q-function is the unit-Gaussian tail probability.

— The importance of the SNR (difference in means divided by
the standard deviation) is obvious.

— In many cases — especially asymptotic ones — the test
statistic is approximated as Gaussian, at least under H,.
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Receiver Operating Characteristic

Sometimes a plot of
probability of detection
versus signal to noise ratio
for a fixed false alarm rate is
also called an “ROC.”
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1 ROC: Plot of probability of detection
| versus probability of false alarm.
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Discrete Data

e Suppose our testing problem is
Hy: Pr(z;=1) = 1—Pr(z;=0)=qo
Hy: Pr(z;=1) = 1—Pr(x;=0)=q

e Then our test statistic is

n

g7 (1 — qp)t— (1—(11) (Q1( —qo>
= lo = nlo + lo E e T E i
g(z o' (1 —qo)? ) i 1 —qo g (1—q1)q0 (z) = v

1=1

* Now we can only reach certain probabilities of
false alarm:
Pfa — 07 Q(T)La n(l_QO)qg_17
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Discrete ROC

A
1 )
o Suppose we
B used test A 50%
5 A of the time and
‘ o test B 50% of
the time?

o >

I:)fa
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Randomization

This is one reason why
an ROC has to be
concave — always!

P, 1

a
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Just use the two
“‘corner” tests
sometimes A,
sometimes B.

This is one reason why
an ROC has to be
concave — always!

(Well, almost always.)

P;

a

NATO STO IST-155, Willett Slide 10



COLLABORATION SUPPORT OFFICE

Decentralized Detection

Individual decision-makers
(DMs) ingest local observations
(x;) and provide a quantized
version (u;) of that data to the
fusion center (FC) who makes
the final decision uy,.

For now assume the x;'s are
independent conditioned on the
hypothesis.

For now also assume the
quantization is binary — that is,
the u’s are “local decisions”.

- Tenney & Sandell, “Detection with distributed sensors,” TAES 1981.
- Chair & Varshney “Optimal data fusion in multiple sensor detection systems,” TAES 1986.
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The Chair/Varshney Result for the FC

* In asense, we've already seen it: it’s the case with
binary observations, which is a “counting rule” for

observations that are iid (k-out-of-n):
Holpr(ilji:l) = 1—PT(Q?¢ZO)Eq0i

) \z) = Zzn;log (q““ ) Zwlajz

Hy: Pr(xz;=1) = 1—Pr(z;=0)=qy (1 — q1i)qoi

 The cases k=1 and k=n are interesting: OR and AND.

— Naturally an OR rule needs much more selective decision-
makers, since the low threshold at the fusion center
requires high thresholds at the local DM level.

— It is not clear in general which is better.
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What about the DMs?

* It's fairly easy to show that the DMs are likelihood ratio
tests in the case of binary observations:

— The FC benefits from the best q, and q;.
— That means a LRT at the local DM level.
* In the more general case of multi-level observations the
situation is not so clear.
— But is turns out to be the natural extension.
— The DMs quantize their local likelihood ratios.

e Hence both DM and FC are likelihood ratio tests.

— The FCis fairly simple given the DM, but optimizing the DMSs’
guantization rules is not straightforward.

* This is true even when the channels are error prone. L
%
Tsitsiklis “Decentralized Detection,” (in Advances in Statistical Signal Processing, vol. 2), 1990. '
Chen & Willett, “On the Optimality of the Likelihood Ratio Test for Local Sensor Decision Rules in the Presence =
of Non-ldeal Channels” T-IT 2005.
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Calculation of DM rules

e Using Tang, Pattipati & Kleinman’s idea, an
optimization can proceed using Gauss-Seidel:
— Fix the FC rule.
— Guess the quantizations at the DMs.
— Optimize DM,’s rule given all others fixed.
— Proceed to DM, and continue.

* |t does converge, although no proof to an optimum.
* Requires independent DM'’s.

* Must be done for all FC rules.
— Fortunately there are only a finite number.

- Tang, Pattipati & Kleinman, “An algorithm for the detection thresholds in a distributed detection problem,” SMC-A 1991.
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More Comprehensive DM Rule
* Blum provided the following iteration:
— Define “everyone else”: ax = {u1,.. ., up_1,Ugs1,---,Un}
— Define:
Dji(xr) = pjar) [Zp(u() = Uag, up = 1) — p(uo = 1|t up = 0)] p(uk|zk, Hj)
— Then the DM rule must be a “likelihood ratio” test on:

D1y (zr)/ Dok (k)
— The recursion is similar, except that the FC rule changes in each
iteration

* This is more general in the sense that the FC rule is
implicitly optimized and independence is not necessary.

* However there is no general rule for M-ary quantizers.

- Blum, “Necessary Conditions for Optimum Distributed Detectors Under the Neyman-Pearson Criterion, T-IT 1996.
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An Example

 Consider we have 2, 3 or 4 sensors with an inverse-
square power law and Swerling targets. We optimize
over both DM and FC rules for each position:

This plot shows contours of
constant P, with P, = 10-.

The sensors are moved apart
to see the various fusion rules
and whether the coverage area
is improved.

-2 -1.5 -1 05 1] 0.5 1 1.5 2

- Willett, Alford & Vannicola, “The Case for Like-Sensor Pre-Detection Fusion,” TAES 1994.
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Some Optimal Fusion Rules

organization
CSO

” Location [ Fusion Rule ’ Cardinality H
a at least three of {uy,us,us, us} 5
b uy.ug + (4y + uz).uz.uy 6
c tg.(uy + vz + ug) + uy.uz.u3 8
d uy.(u2 + us + uq) 7
e ) + Ug.ug 10
f us + up.(u; + ua) 11
g uq + ua.(ug + uz) 11
h ug.(uy + ug.uq) 5
1 ug.(uy.ug + 14) 5
] ug.(at least two of {uy,ua,uq}) 4
k uz.ug.(u) + ug) 3
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The Advantage

26
©
O 24t
o
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) 22t
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« | 3 sensors
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Inter-sensor Distance

I.B

2

The message here is
that distributed
detection can help in
a certain “sweet
spot” where
cooperation between
the DMs is effective.
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How Much Do You Lose?

e Let’s compare Tl(:c)—Z:cz to T.(x Zslgn (z;) iIN N(£p,0?)

=1
* SNR for linear detector is =5~ Tl — &8 57
* SNR for sign detector is
(E{sign(x)| H1} — E{sign(w:)|Ho})*
V{x|H:}
2 2 )2 z4p)? 2
([f() 271'02 (IQ_UI;) _I_OOO 211'026 (m H)] [fo 27r02 (1202) _fi)oo 2;026_%])

.2 1 2 8,LL

— ( e /20 ) ~ (4,u ) -
—u V2mo? V27mo? To?

* This is why “you lose 2dB” (2/m).
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Alternative Ways to Optimize

* Traditional criteria:
— Neyman-Pearson maximizes P, for fixed Ps..
— Bayes minimizes average cost (needs priors).
— Can show that Bayes optimal is optimal for its (P, Py,).

e Can also design DM to optimize mutual information:

Pr(ug, H)
T(ug: H) = P H)1
He{Hy,H1} upc{0,1}

Unfortunately this turns out to be no simpler than
optimizing under Neyman-Pearson or Bayes.

— The reason is that u, requires the fusion rule.

NATO STO IST-155, Willett Slide 20



COLLABORATION SUPPORT OFFICE

Simpler Suboptimal Criteria

* These simply try to pass good DM data to the FC
— mutual information:
- Pr uz-,H
o) = 32 30 3 prtwoion ()
— J-divergence: St
- Pr(u;|Hy) Pr(u;|Hy)
THud) = 2 {5 {1°g (Pr(uAHo)) 'Hl} - 5{1°g (Pr<u@~|Ho>> 'HH
— Bhattacharyya affinity: )
B({u;}) ZZ / Pr(u;|Hy) Pr(u;| Hy)

— Also efficacy, KL-dlvergence any Ali-Silvey distance.

* It can be shown that all these result in likelihood
ratio quantizations at the sensors.
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Why Care About The Quantization?

Al ] The Gaussian
case (additive
signal: +/-1) with
M=3 levels of

log likelihood ratio
o
T
|

| quantization
corresponding to
| LLR thresholds
. ; o : : ; -0.5 and +1.0.
A, A, As

- Willett & Warren, “Optimum Quantization for Detector Fusion: Some Proofs, Examples, and Pathology,” JFI 1999.
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Gauss-mixture and Cauchy Cases

As can be seen, the quantization regions are no
longer simply-connected in the observation space.
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Use of Distance Proxies

This shows the result of
optimizing J-divergence for
a 4-level quantization in
Cauchy noise. Note the
similarity of the optimized
quantizer to the proxy one.
Note also that the proxy
quantizer does not depend
on the desired false alarm
e rate, while the N-P optimal
oo 4202 488 0 quantizer does.

1.5 —
Optimal for 1%

false-alarm rate

o J-Divergence

Log-Likelihood Ratio
o

77777777777

NATO STO IST-155, Willett Slide 24



COLLABORATION SUPPORT OFFICE

Some Strange Things Happen

* Suppose we have the likelihood ratio H, pdf

< 5 + < p) 0<x<2
0

Fro(z) = 1+ [k(z—3)] 1+ [k(z—$)]

else

* We need to have this have unity mean for validity.

101 k=100

pdf of likelihood ratio
©

4k
2k
k=10
o
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

likelihood ratio

organization
cCSO

Slide 25

NATO STO IST-155, Willett



O1 \ N organization

COLLABORATION SUPPORT OFFICE

We Optimize for n=3 “Identical” DMs

185 : The optimal fusion rule

AND MAJORITY OR

changes from AND to
Majority-logic to OR as P,
increases.

threshold

In the case k=100 (very
nearly point masses) the

y optimal thresholds turn out to
02l f be different at the various

0 | | | | | | | | | D M S L]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

alpha
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Dependent DMs

e Consider the case n=5 and Gaussian mixture noise

H()Z Yz =
H1I }/z =

(1—Z)N17, + ZNQz
Si + (1—Z)Ny; + ZNy;

e Either all DMs get low noise or all high noise.

1.5

g(x)

Quantizer (independence)

Log-Likelihood Ratio

<-- Quantizer Thresholds (dependence)

-1

Quantizers optimized under
Bhattacharyya criterion. Under an
(incorrect) assumption of independence
the result is a likelihood ratio
quantization; correctly assuming
dependence results in a direct data
guantization! This makes sense in that
information about Z is contain in the data.

L L L L L L
0 2 4 6 8 10 12

14
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The Good, Bad and Ugly

* Perhaps the simplest case of dependent
observations we can explore for quantization is that

of correlated Gaussian noise, two sensors, binary
guantization and an additive signal.

 Mathematically:
H: z1,20~N(0,0,1, 1, p)
K: Ly, T2 ~~ N(Sla 52, 13 13 p)
 There are clearly only three fusion rules possible:
AND, OR and XOR.

- Chen & Papamarcou, “Likelihood ratio partitions for distributed detection in correlated Gaussian noise,” ISIT 1996.
Willett, Swasek & Blum, “The Good, Bad, and Ugly: Distributed Detection of Known Signal in Correlated Gaussian Noise,” TSP 2000.
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The Regions

82

“pad” / slope 1/p
“ugly” “good”
slope p
ﬂd”
51
((bad”
“good” “ugly”

“‘b ad”

It turns out that we have different behaviors
depending on the interplay between signal
and correlation.

Good: Quantizers are single-interval and
the FC is AND or OR.

Bad: AND/OR quantizers either ignore one
sensor or are non-simply connected.

Ugly: Little is known, except that AND/OR
quantizers are often non-simply connected
and that XOR rules can be optimal.
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XOR is Optimal?

St

i
ASHCH e
7

i

e
e

SR o

e
o

o
S
e

XOR-imputed decision regions.

NATO STO IST-155, Willett

XOR turns out to be optimal h

ere. Neither is simply-connected.

AND-imputed decision regions.
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Censoring Sensors

* |In a communications-constrained system it is
intuitive that one does not “send” information unless
what one has is worth sending:

(X)) €R, [.(X) 1s sent
{li(é\,’i) €R,  nothing is sent}

* Maximize FC’s P, subject to constraint on P;, and

N
Y Pr(l(X) R |H) < ryp <N
i=1
* Naturally there is a Bayesian version of this too.

- Rago, Willett & Bar-Shalom, “Censoring Sensors: A Low Communication Rate Scheme for Distributed Detection,” TAES 1996.
- Appadwedula, Veeravalli & Jones, “Decentralized Detection with Censoring Sensors,” T-IT 2008.

NATO STO IST-155, Willett Slide 31



e —_— w e —

sANI1/

TECHNCOC Y ORCG ZATION
COLLABORATION SUPPORT OFFICE

Censoring Region is an Interval

 The result is that the “no-send” LLR region is:
R, ={l; 1 1}; <L(X) <t}

A
________ . e -
send : don’t send ! send
| |
<€ i >
4 t, LLR
4
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Threshold Level

102 ¢

100

100 &

10-2

Optimal thresholds for CA-CFAR
problem (SNR=10dB, 8 reference
cells) and Bayesian case, plotted as a
function of the target-presence

Censoring: CA-CFAR Example

10! =

Upper Thresholds

e
P

comm, constraint = .]

_ . comm, constraint = .2
comm. constraint = 4

Average Comm. per Sensor

X P
5 " .
A . ] °
Lo kgLl G I Y L

0.2 03

Probability of Target Present

probability.
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T LT LT T T S e Lt T L LT CEPREPP

binary/paralle] scheme

102 5

103

104}

10..5 _ 2 1 P W T Y ) L 1 Lo dad 3oL R4 1 [ I R N T W O

e o o 102~ 103

Signal to Noisc Ratio

Communication rate needed to match
performance of uncensored scheme
(assumed to use 24 bits).

False alarm rate is 0.01%.

N is number of sensors.
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Feedback

e Suppose there is a backward path from FC to DM:

C

Signal in noise

)

T

sensor 1

Z2

sensor 2

TN

sensor NV

Fusion center

* The effect is to tell DM1 (who said “no”) that DM2,

DM3 & DM4 said “yes”.

— |s she is sure about her “no”?

e This amounts to a lowered threshold for DM1.
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Feedback: Bayesian ldea

The idea here is that each DM makes a Bayesian
decision at each step to minimize P(e).

The Bayesian LR test threshold is Pr(H,)/Pr(H,).

The feedback information means Pr(H,) is modified
to be “posterior”: given all past information.

That is, the test is:

2 7T0 Pr4;,, | Hy)

A(x.
(x’) <, Pr(ul,m|H1)

where U, , is all previous data (before time m) from
all DMs except DM .

- Swaszek & Willett, “Parley as an Approach to Distributed Detection,” TAES 1995. \J
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Feedback: Bayesian Example

organization
CcCSO

With Pl | Ho) \ye have the example
m Pr(U, ,, | H,)
Sensor 1 | Sensor 2 | Sensor 3 | Sensor 4

A(z;) 75 92 1.15 1.03 memmp product is 0.82
i1 1.00 1.00 1.00 1.00

Ui 1 0 0 1 1

i 2 0.85 0.85 1.17 1.17

Uj 2 0 1 0 0

i3 0.93 1.13 1.31 1.31

U;,3 0 0 0 0

* Apparently DM1 is pretty convincing.

* Convergence to a unanimous decision is guaranteed
via a Martingale proof.

NATO STO IST-155, Willett Slide 36



COLLABORATION SUPPORT OFFICE

Feedback: Bayesian Results

0.44 T T T T T T ¥ —

042

0.4F
In Order:

One-bit paraliel
Parleying
Two-bit paraliel

0.38f

ot
[&]
o

‘§ Centralized

%Da&

50.32-

0.3

0.28+

C.261

T AU R 10— i mysa e
Performance in the Gaussian shift-in- Most of these iterations end in a
mean problem as function of number consensus after 2 rounds.

of DMs.
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Feedback: The Nt"-Root Idea

n H,
e If A is the centralized Bayesian threshold, then we ]]AG)ZA
have so why not have DM test according to =t

ui,m=0
Ax) = X, where [, =2

Uim =0 i=1

* [tis even simpler if we choose all the same: A | = AL/

e We can show that we should use
7 Prise < Axp) <ty | Hy)

Ui =1 A = )\H Pr(sy,, < Ax) <1, | H)
A (x) = (A" where k=1 |
m\"vi < m
uim=0 — )\Pr(um | HO)
Pr4, | H))

where A, (x;) is the local LLR given its past test outputs.

* Convergence is assured here too.
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CcCSO

Nth-Root Example

Sensor 1 | Sensor 2 | Sensor 3 | Sensor 4 | Sensor 5 | Sensor 6
A(z;) 99 .95 1.21 .86 92 1.26
i1 1.00 1.00 1.00 1.00 1.00 1.00
Uj 1 0 0 1 0 0 1
i 2 0.90 0.90 1.24 0.90 0.90 1.24
Uj 2 1 1 0 0 1 1
i3 0.95 0.95 1.10 0.79 0.95 1.37
U; 3 1 1 1 1 0 0
i 4 0.96 0.96 1.14 0.83 0.91 1.27
Uj 4 1 0 1 1 1 0
A5 0.96 0.93 0.84 1.15 1.08 0.80
Uj 5 1 1 1 1 1 1

mep productis 1.13
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Nth-Root Results

* Since the decision is
optimal, there is no
need to check
performance, just
how long it takes.

* Here we plot that
for a small-signal
Gaussian problem
versus number of
DMs.

NATO STO IST-155, Willett
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Censoring With Feedback

e Suppose the scheme is augmented to the following
logical (but suboptimal) scheme:

( decide for H Lgc < Tge, DO sensor
has transmitted
< request further at least one sensor has
information not transmitted
decide for K Lgc > Tge, all sensors
have transmitted

* The reques:c for further information is that all silent
sensors transmit.

* We use the “parley” system, where t, is
the threshold below which a sensor is silent.
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C Ao
Distributed Detection Structures
X3WU3 E serial
or
tandem
parallel
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X4 X2 X3 X4 Xs

l l l l l Little is known about

DM, DM, DM, DM, the best such

structure — or even
what “best” might
mean.

u, Us Uy Us

A human decision-
making concept is of
“congruence’
between task and
structure.

Up
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Tandem Structure

threshold
A

There is an optimal
Bayesian solution:
1—P(i—1
N 1°g< Pe(vz(— 1) ))
(symmetry) and
> DM index provided the LLR is
tightly bounded to U

, 1
P = 15y

Interestingly, in the
Gaussian case P(n) does
v not go to zero unless

A o 4/log(i)
- Cover, “Hypothesis Testing with Finite Statistics” Ann Math Stat 1969.
- Swaszek, “On the Performance of Serial Networks in Distributed Detection,” TAES 1993.
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Decision Networks That Learn

e Consider the problem that the FC (parallel topology)
needs to make a decision based on DMs of unknown
qguality.

° I u) — - [1_Pd(i)] )Y

Thatis, L(u) E[l— (Z)]l upf )u but P,(i) and P,_(i)
are unknown.

* Now suppose that the FC has access to previous
decisions ... but does not know ground truth in any of
them.

* Assume DMs are conditionally independent.

- Wang, Kaplan, Abdelhazer & Aggarwal, “On Credibility Estimation Tradeoffs in Assured Social Sensing,” JSTSP 2013.
- Marano, Matta & Willett, “The Importance of Being Earnest: Social Sensing With Unknown Agent Quality,” TSP 2016.
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¢ | Truth | DM1 | DM2 | DM3 | DM4 | DM5 | DM 6

1 Hy 1 0 1 0 0 0

2| H | v o v v oo e DM1 has high Py and high P,
e T T T T T ol © PM 2 has high Py and low Py,
st | 1+ 1 ol ol 11 o |* DM3haslowP,and high P,
6| m | o 1 o] 1 ]o] o] DM4hasP,andP,near50%
rpm gt oot 9% e DM 5 has high Py and low Py,
1t o1 * DM6 has low P, and low P,

10 | Hp 1 0 0 0 0 0

'

How do we find this out?
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EM Approach

 The EM approach is a “meta-algorithm” appropriate
when there is hidden data that is not desired.

— Here the hidden data is the truth (hypotheses) at all times.
* Initialize the P ’s and P,,‘’s — say 80% & 10%.

w;i(t) = Pr(H; true at frame ¢t|{U;(t)}i—;)
Pr(H;) [Ti—y ([ = Pa(@)]* O Py(i)V)
Pr(Ho) [T, ([L = Ppa(d)]1 @) Ppo (1)) + Pr(Hy) [T, ([1 — Py(i)]2=ui(®) Py(i)ui(®)

Z?:l w1 (t)u;(t) ]
S wi(t) iterate back and forth

o« Egeiont 1
P’I“(Hj) «— Z?:l wj (t)
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How Well Does It Work?
Ground truth No. of taks =30

* Network of 1000 DMs.

* Hot (red) circles denote a
high error probability, while
cold (blue) circles denote
low error probabilities.

 Red dashed circle
surrounds low-quality DMs.

* We see how the learning
ability of our algorithm
progressively increases, so
we “unmask” the unreliable
DMs.
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Byzantine Sensors

* A Byzantine sensor is one that messes with the FC

— it’s tempting (e.g.) for a Byzantine sensor that “knows” H, is
true to send message that says it knows H, is true

— but this is too obvious, the FC can disregard such messages
— So must try to send a disguised message

 Assume a fraction o of the sensors are Byzantine
— report on asymptotic results
— assume (here) that the Byzantines collude and know H

— non-Byzantine sensors have probabilities of sending message
u=k: q,(k) and q,(k) respectively under H, and H,

— Byzantine sensors have corresponding probabilities
of sending message u=k: 0,(k) and 0,(k)

- Matta, Marano & Tong, “Distributed Detection in the Presence of Byzantine Attacks,” TSP 2009.

organization
CcCSO
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e Critical “blinding” fraction of Byzantine sensors
>k lao(k) — qu (k)]

1
TS, B — (B 2

— if a>ay, then the FCis completely blind

* Otherwise with a < a,
Oo(k) =

01(k) =
Yo -

Y1t
e QOther considerations

— Byzantine sensors do not know the true hypothesis
— multiple observations from each sensor
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Distributed Detection with Secrecy

Since detection is possible for an eavesdropper as well as FC,
Then network protection is necessary

/ take care of

Energy Consumption Security against Eavesdropper
by means of
Censoring Sensors Physical Layer (Detection) Security
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Our setup: the
eavesdropper
only knows that
something was
sent

i-th sensor
likelihood
Y SENSOR ~ FUSION
1 —| TX POLICY > CENTER
DEGRADED A
CHANNEL EAVESDROPPER
i-th sensor
likelihood
Y— ~ FUSION
i CENTER
\\\\ ‘\\\ o i IDLE O‘
\\\\ \\‘..‘ EAVESDROPPER
“““““ BUSY T

- Marano, Matta & Willett, “Distributed Detection with Censoring Sensors under Physical Layer Secrecy,” TSP 2013.
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divergence @ fusion center (from i-th sensor)

overall (additive) divergence some convex U function
e.g., the two KL numbers

1

C = log —
overall divergence @ eavesdropper o1(9) 5 Y

1)+ 1= oine (D)

NATO STO IST-155, Willett
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Perfect Secrecy

General formulation: Limit to PERFECT SECRECY
maximize > | D; : :
subject to  max{ B (i), Bo(i)} < B Vi A =0 <smmmp [i)=70(i)

DBCLU S A
yielding:

maximize Y. , D;

subject to  31(i) = Po(7) < B Vi

divergence-cost
function

or, equivalently, we must compute

f
— @) d
jmax /Rpo@ (y)dy
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0.15

0.1

0.05

0 02 04 06 08 1

 The divergence loss|due to the secrecy requirement is modest.
*  With low comms (8—0), the FC and the eavesdropper see the same picture.
* Looking at the transmission activities, rather than the content, is nearly optimum.
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More Secrecy

* Encryption
— eavesdropper cannot decode

* Information theoretic analyses
— bandwidth / information / secrecy trade-offs

e Homomorphic techniques

— make a cooperative colleague do work for you while hiding
your data from her
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Sequential Testing

e suppose simple binary hypothesis test
— H, versus H,
— T =log(f,(x")/f4(x")) is LLR
— stopping rule and decision controlled by upper and
lower thresholds

A

b e Ny

Van decide for H, attime N

LLR : r— R

a

\4
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Sequential Testing

fixed sample size (FSS) test
g —

more general test
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* define Q={x": decide for H, at time N=n}
* define R ={x": decide for H, at time N=n}

0{=ngnfo(xn) 1_[)):21;{ fl(x")
! : .
EEZLnﬁ(x) sAEj;nfo(xn)

£ = A(l-a)
B

I

e Wald’ s approximations for (LR, not LLR) thresholds A & B:
— eP=B=f/a and e®=A=(1-)/(1-a)
e easier than fixed sample-size (FSS) testing
e Wald’ s identity can find average sample numbers (ASNs) for iid case
— E(N[H)=E(Ty| Hj)/ptj where L, is mean of update
— also easy to figure out
— Martingale proof, or using moment generating function
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Sequential Testing: Analysis

 Wald-Wolfowitz Theorem:

— any test with better than a given o and 3 performance must have E(N|H;)
performance no better than the corresponding SPRT

— no point in trying to play games with decision regions or boundaries
e optimality is slippery
— FSS test

* has best error performance & bounded N
* but worse ASN than SPRT

— truncated SPRT (Tantaratana & Poor)
e essentially same ASN as SPRT
* better ASN than FSS test

* multiple hypotheses:
— alotis still open
— Veeravalli, Tartakovsky
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Distributed Sequential Detection

* Could simply have sequential test based on DM-level
observations, but that is not so interesting.

* So consider a sequential testing paradigm in the
SENMA architecture
— sensor networks with mobile agents, a.k.a. rover, a.k.a. FC

— in computer science this is a “data mule”

- Marano, Matta, Willett & Tong, “Cross-Layer Design of Sequential Detectors in Sensor Networks,” TSP 2006. \ 44 ““/
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 Poisson field of
Sensors

e sensors do not
know their
neighborhood

e FC hears DMs via
ALOHA

— need exactly one
transmission for
success

— pure ALOHA
efficiency is upper
bounded by 18%

rover
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e SENMA works best .
with “censored” —
observations gl reshols
* optimization shows
Pr(no transmit)=0 ;
— all “don’t transmit” £
decisions should be m
based on local 1
threshold
* )\ =Poisson density D I ——
of sensors e
* Aisarea per unit Exponential observation case

time that rover sees
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* Now suppose both FC and DMs use sequential tests
— SPRT is a kind of “censoring”
— results here for Gaussian shift-in-mean

P.(FC) << P_(DM)
— the DM tests are much less reliable than the FC decision

E(Teo) = E(Tpy)
— the DMs do not work (much) beyond the final decision

E(TFC) = E(Tsmgle sensor) (SNR/x)l/z
— an equivalent single sensor test would take far longer
E(N) = 0.3 x A x E(T)

— number of FC reports received is about a third of the
nodes encountered, regardless of P, or SNR
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Quickest Detection

* nature changes from H, to H,
— want quickest alert of this change
— assume independent data
* intuition:
— form cumulative LLR
— if it jumps enough, declare a change

cumulative /

LLR

|sufﬁcient change

) . /

overall min
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e same as CUSUM (cumulative sum)
— T,=max{0,T ,+g(x,)}
— iterated SPRT

— unit Gaussian shift-in-mean:
* T.=max{0, T, ;+(x,-w2)}

N

A “bias” ensures H, drift downwards

: /

change
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* unit Gaussian with mean +/-0.2

CUSUM
change point

data

/

W
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* asymptotically (as h gets large) have T=e"P
— 1 is “Page’ s efficiency”
— suppose Tis 1,000 and D is 10
— then can have T=1,000,000 with D=20

e otherwise, for performance:
— Siegmund’ s correction terms
— Brownian motion or discrete random walk results
— “C-matrix’ or iterated FFT
e optimality:
— Page procedure is “quickest” for iid case
* Lorden, Moustakides

— for non-iid case it is known to be quickest for only very
special cases where updates are conditionally iid

* some Markov chains (Moustakides)
e some special HMMs (Fuh)
— in some dependent cases Page is very suboptimal
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Summary

 Detection basics
— Neyman-Pearson, Bayesian, ROCs, useful alternative metrics

e Distributed detection and decision fusion
— How to quantize and how to fuse

 Some fun pathologies
— ldentical sensors can be different
— Dependence: little is known except it’s strange

* New structures
— Censoring sensors: reduced communication
— Feedback of decisions: “How sure are you?”
— Sequential networks: tricky to avoid lock-up

— Learning decision-makers’ biases: rich area with human decision-making
applications and many extensions

— Using censoring to hide data — secrecy
— How Byzantine sensors should work
— Sequential decentralized detection schemes
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Questions?

ARy

QUESTIONS2!2!:
il 7

’
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